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Abstract—Many works infer finite-state models from execution
logs. Large models are more accurate but also more difficult to
present and understand. Small models are easier to present and
understand but are less accurate.

In this work we investigate the tradeoff between model size
and accuracy in the context of the classic k-Tails model inference
algorithm. First, we define mk-Tails, a generalization of k-Tails
from one to many parameters, which enables fine-grained control
over the tradeoff. Second, we extend mk-Tails with a reduction
based on past-equivalence, which effectively reduces the size of
the model without decreasing its accuracy.

We implemented our work and evaluated its performance
and effectiveness on real-world logs as well as on models and
generated logs from the literature.

I. INTRODUCTION

Many works infer finite-state models from execution logs.
The inferred models have different potential uses, from program
comprehension and malware detection to finding problems in
service levels, to list a few. Large models, with many states
and transitions, are more accurate but also more difficult to
present, analyze, and understand. Small models are easier to
present, analyze, and understand, but are less accurate.

In this work we investigate the tradeoff between model
size and accuracy in the context of the classic k-Tails model
inference algorithm. k-Tails, introduced in [6], takes an
execution log and a positive integer k as input, and constructs a
finite-state machine (FSM), whose states correspond to unique
sub-sequences of length k or less from the log, and which
accepts a language that over-approximates the set of traces in
the log. Roughly, the higher the parameter k, the more accurate
the produced model. At the same time, however, the higher
the parameter k, the larger the produced model. Over the last
two decades, k-Tails was very popular and has been used, in
many variants, by many different authors.

We investigate the tradeoff between model size and accuracy
in two ways. First, we present mk-Tails, a generalization of
k-Tails from a single parameter k to a set of parameters
{k1, . . . , kt}. Second, we present an efficient reduction in the
size of the inferred model that does not affect accuracy.

Specifically, first, we observe that some elements in the
logs, e.g., some events or sequences of events, may be of
more interest than others. For example, based on domain-
knowledge in security, the engineer may know that some events
or sequences of events are more sensitive than others and
require more accurate inspection. As another example, in the
context of checking that a bug was fixed, the engineer may
be more interested in events that were involved in the bug at
hand than in other events that appear in the log. However, the

k-Tails algorithm provides a single, fixed level of abstraction
(over-approximation) for the entire log. In other words, the
engineer cannot get a model that has less abstraction around
some events and more around others; her control over the
tradeoff between abstraction and model size is very limited.

Our new algorithm, mk-Tails, extends the k-Tails algorithm to
accept a set of input parameters {k1, k2, . . . kt}, each of which
applies to a subset of events in the log’s alphabet, as selected by
the engineer. Accordingly, mk-Tails produces a model whose
level of abstraction varies; it is more accurate around events
whose corresponding k is high and is less accurate around
events whose corresponding k is low. This enables fine-grained
control over the tradeoff. As we later show, increasing the
value of k for the entire alphabet, as was done in all previous
works, may result in a major increase in the model size. In
contrast, our extension, mk-Tails, allows the engineer to make
the model accurate where necessary and less accurate where it
is not necessary, gaining more accuracy while paying less in
model size, and thus better control the tradeoff.

Second, we observe that the model produced by k-Tails (or
mk-Tails) may include many redundant states and transitions;
the model is often larger than it needs to be. Thus, based on
merging of states with equivalent past, we show a reduction
in the model’s states and transitions that preserves the model’s
language and thus reduces its size without reducing its accuracy.
Importantly, unlike existing reduction algorithms for non-
deterministic finite automata, our reduction is efficient, as it
takes advantage of the information in the logs and the unique
properties of the k-Tails algorithm, even before the model itself
is constructed.

It is important to note that our present work does not make
any new claims regarding the usefulness of the results of k-
Tails for tasks for which it has been used in the past, program
comprehension, test generation, log differencing, etc. Based on
claims and evidence provided in previous works, by others, as
we cite below, we assume that k-Tails results could be useful
for software engineers, and focus solely on the challenges
that are common to all applications of k-Tails: enabling better
control over the tradeoff between model size and accuracy.

It is also important to note two additional assumptions
underlying our present work. First, in this work we assume
that smaller finite-state models are indeed easier to present
and understand than larger finite-state models. Evaluating this
assumption with engineers is outside the scope of our work.
Second, the application of mk-Tails assumes that the engineer
has domain knowledge or task-related knowledge that leads
her to care a lot about accuracy around some events and care



less about accuracy around other events. Providing criteria
for selecting these events of interest is domain-specific and
task-specific, and is outside the scope of our present work.

We implemented our ideas and evaluated them over real-
world logs as well as over models from the literature and
logs that we generated from them. The results show that mk-
Tails performs well and is able to produce models with high
accuracy arround selected events, while not paying much in
model size. Further, they show that our reduction scales well,
and effectively reduces model sizes by 10%-40%. See Sect. VI.

Over the last two decades, k-Tails has been used, in many
variants, in many works [2], [4], [5], [8]–[10], [12], [16]–[18],
[20]–[23], [28], [31]. To the best of our knowledge, no work has
considered a generalization of k-Tails to many parameters. In
addition, no work has investigated applying reductions over the
k-Tails model, while taking advantage of its unique structure
and exploiting the data-structures from which it is inferred.
See related work in Sect. VII-B.

II. EXAMPLE

We use a small example to motivate and demonstrate our
work, presented semi-formally, for illustration purposes. Formal
definitions appear later in the paper. Consider a very small log,
which consists of 5 traces, see Fig. 1. An engineer wants to
produce a finite-state model that represents the behaviors that
appear in the log. Ideally, the model should be informative,
small, and accurate.

For a start, the engineer runs the classic k-Tails with k = 1.
Fig. 2 shows the resulting model, which is a compact but a
rather general one, perhaps too general. For example, the model
accepts traces that contain the sequence cd → lf → mkdr,
although this sequence is not part of any trace in the log.

The engineer may be happy with the size of the model
but less happy with its spurious traces and the relatively high
abstraction. Hence, she increases the value of k to reduce the
abstraction in the model.

Fig. 3 shows the model produced by running k-Tails with
k = 2. The new model no longer allows the spurious sequence
cd → lf → mkdr. Indeed, the abstraction in this model has
decreased dramatically. However, the size of the new model,
when counting both states and transitions, grew by 35.3%, from
51 to 69, making it more difficult to comprehend.

| Tr1 | Tr2 | Tr3 | Tr4 | Tr5 |
----- ----- ----- ----- -----

| init | init | init | init | init |
| conn | conn | conn | conn | conn |
| in | in | in | in | in |
| sf | cd | cd | ln | ln |
| lf | lf | lf | rf | af |
| mkdr | sft | sft | del | rn |
| out | out | out | af | rf |
| dis | dis | dis | rn | del |
| clr | rm | clr | out | out |
| dis | | | reset | dis |
| | | | dis | |
| | | | clr | |

Fig. 1: A log of 5 traces, inspired by the cvs.net model from [17]

To address this, the engineer uses our new algorithm, mk-
Tails: as based on her knowledge of the domain, some events
in the logs are more important than others, she uses mk-Tails
to assign different ks to different subsets of the log’s alphabet.
Specifically, as an example, she uses k = 2 for the event lf,
which based on her knowledge of the domain is more important
than other events, and k = 1 for all other events.

Fig. 4 shows the output of mk-Tails in this case. Now, the
model size, counting all states and transitions, has only grown
from 51 to 52, yet it excludes the spurious sequence above. This
demonstrates the ability of mk-Tails to deal with the tradeoff
between model size and accuracy by fine-grained control using
different abstraction levels around different events.

Finally, the engineer applies our past-equivalence reduction
algorithm over the mk-Tails model. This reduces the size of
the model without changing the language it accepts and thus
without affecting its accuracy (and as we later show, is done
efficiently over mk-Tails models).

Fig. 5 shows the result of applying the reduction to the
model of Fig. 4. Note that states 4, 11, and 15 from Fig. 4
have been merged into state 22 from Fig. 5. Further, states 9
and 14 from Fig. 4 have been merged into state 23 from Fig. 5.
The model now has 46 states and transitions, a reduction of
13%. Importantly, this final model accepts the same language
as the mk-Tails model over which it was applied.

III. PRELIMINARIES

We present basic definitions and background on k-Tails and
NFA reductions, required for the later parts of the paper.

A. Basic Definitions

A trace over an alphabet Σ is a finite word w =
〈σ1, σ2, . . . , σm〉, where σ1, . . . , σm ∈ Σ. For j ≥ 1 we use
wj to denote the jth element in w. We use |w| to denote the
length of w. For a positive integer k, let Σ≤k denote the set
of all sequences of length k or less.

A log L over an alphabet Σ is a set of traces L =
{w1, . . . , wn}. We denote by |L|, |L|e the number of traces
and events in the log resp.

Example 1. For the log in Fig. 1, Σ={sft, init, cd,

conn, ln, in, af, lf, del, out, dis, sf, rf,

rn, rm, mkdr, clr, reset}, |L| = 5, |L|e = 50.

Definition 1 (Finite-State Machine (FSM)). A finite-state
machine is a structure M = 〈Q, I, F,Σ, δ〉, where Q is a
set of states; I ⊆ Q is a set of initial states; F ⊆ Q is a set
of terminal (accepting) states; Σ is an alphabet; and δ is a
transition relation δ : Q× Σ×Q.

We use subscript notation to refer to the elements of an FSM
model M . For example, δM refers to the transition relation of
M . For t = (q, σ, q′) ∈ δ, ts, tσ , te denote q, σ, and q′ resp.

Definition 2 (A Run). A run over an FSM model M , is a
finite sequence of transitions that starts on an initial state
and maps to transitions in M : 〈t1, t2, . . . , tn〉, s.t., t1s ∈



Fig. 2: The result of running k-Tails with k = 1 on our example log. The model has 21 states and 30 transitions, and contains the spurious
sequence cd→lf→mkdr (red edges).

Fig. 3: The result of running k-Tails with k = 2 on our example log. The model has 31 states and 38 transitions.

Fig. 4: The result of running mk-Tails with k = 2 for lf, and with k = 1 for all the other events in the log. The model has 22 states and
30 transitions. The spurious sequence cd→lf→mkdr is excluded.

Fig. 5: The result of applying past-equivalence reduction over the mk-Tails model in Fig. 4. The model has 19 states and 27 transitions.
Green states correspond to past-equivalent states from Fig. 4.

I ∧ ∀i < n, ti ∈ δM ∧ tie = ti+1s . Each run defines a word
w = 〈t1σ, t2σ , . . . tnσ 〉. The word w is in L(M) iff tne ∈ F .

Let M be an FSM over an alphabet Σ. We use L(M) ⊆ Σ∗

to denote the set of all words accepted by M .
An FSM is deterministic iff every word has a single

corresponding run, and non-deterministic otherwise. We refer
to a deterministic, non-deterministic FSM, by the common
acronyms DFA and NFA, resp.

B. k-Tails

k-Tails, first introduced in [6], is a classic model inference
algorithm. Over the last two decades, k-Tails has been presented
in several variants and implemented in many works, e.g., [2],
[5], [10], [20]–[22].

k-Tails takes a log and a parameter k as input. It starts
by representing the log as an FSM Mlin composed of linear
sub-FSMs, one per trace, which are joined by adding a single

initial state qinit transitioning to the start of each trace via
a unique α label, and a single terminal state qacc to which
all traces transition to at the end via a unique ω label. The
language of Mlin equals to the language of the log, given that
each trace is encapsulated by α and ω events. We refer to this
version of the log as the encapsulated version, denoted by Len.

Next, k-Tails iteratively merges states in the Mlin FSM: Two
states are merged iff they are k-equivalent, i.e., if their future
of length k or less, is identical. The algorithm terminates and
outputs the resulting FSM when no two remaining states are
k-equivalent.

More formally, we define a function futurek : QMlin
→

2Σ≤k , mapping states in Mlin to sets of k-sequences, consecu-
tive sequences of k events or less. The k-equivalence relation
induces a partition of the states of the initial FSM Mlin into
equivalence classes E = {e1, e2, . . . , em}, where each ei ∈ E
is uniquely defined by its future sequences of length k or less.
Two states q1, q2 ∈ ei iff futurek(q1) = futurek(q2).



When lifted from QMlin
to E, the function futurek becomes

the injective function id : E → P(Σ≤k). For all q ∈ ei,
futurek(q) = id(ei).

Definition 3 (k-FSM). k-FSM, the FSM computed by k-
Tails for a log L and a positive integer k, is an FSM
ML = 〈Q, I, F,Σ, δ〉 where: Q = E, where E is the set of
equivalence classes defined above; Σ is the alphabet of the log
Len; ∀e ∈ E, a ∈ Σ: δ(e, a) =

⋃{
e′|∃q, q′ ∈ Mlin s.t. q′ ∈

δMlin
(q, a) ∧ q ∈ e ∧ q′ ∈ e′

}
; I = {qinit} is an artificial

initial state; and F = {qacc} is an artificial terminal state.

Among other properties, the correctness of the k-Tails
algorithm implies that the k-FSM M may over-approximate but
not under-approximate the set of traces in the log L, i.e., every
w ∈ L is accepted by ML: L ⊆ L(ML). Additional useful
properties of the k-FSM are that all its states are reachable
from the initial state qinit, and that the accepting state qacc, is
reachable from all states.

Alg. 1 presents pseudo-code for k-Tails implementation. The
input of Alg. 1 is a linear representation of an encapsulated log
Len and a natural number k, and its output is a k-FSM. The
main procedure calls Alg. 1-A. The algorithm initializes an
empty dictionary that maps future to futures. Then, it iterates
over each state of Mlin, computes its future and the future of
its consecutive state, and updates the dictionary. Afterwards,
the main procedure calls Alg. 1-B, which infers the model. The
algorithm starts by initializing an FSM model M . It then iterates
over the future dictionary (lines 3-7, Alg. 1-B). The algorithm
adds a state every time a new future is encountered, and adds a
transition between every pair of states with consecutive futures.
The label over the transition is the first event over the sequences
that correspond to the equivalence class of the source state.
Note that all event sequences in a future equivalence class
start with the same event, due to the nature of Mlin over
which the future equivalence is applied. Thus, the procedure is
unambiguous and well defined. Finally, the algorithm unifies
all states that are followed by α, ω (the artificial initial and
terminal symbols resp.) to a dedicated start and terminal states,
and returns the k-FSM model.

Complexity. Since a trace of a total of n events is represented
by n unique states in Mlin (and the artificial initial and terminal
states), constructing and storing Mlin requires O(|Len|e).
Iterating over all states of Mlin and computing the futures
dictionary requires O(|Len|e · k). Iterating over the futures
dictionary requires also O(|Mδ|), where |Mδ| is the number of
transitions in the k-FSM. Since for any k, |Mδ| ≤ O(|Len|e),
the time complexity of the algorithm is O(|Len|e). As for the
space complexity, storing Mlin, the model, and the futures
dictionary is bounded by O(|Len|e · k).

C. NFA Reductions

For a given NFA, the problem of finding its minimal
language-equivalent NFA is PSPACE-complete [29]. Therefore,
to reduce the size of an NFA while preserving its language,

Algorithm 1 kTails

1: function ALGORITHM: KTAILS

input: M: Mlin, Int: k
output: FSM

2: Set〈Set〈str[]〉〉: futures dict=kFutureMapping(Mlin, k)
3: return InferModel(futures dict)

1: function ALGORITHM(A): KFUTUREMAPPING

input: FSM: Mlin, Int: k
output: Set〈str[]〉 → Set〈Set〈str[]〉〉: futures dict

2: Set〈str[]〉 →Set〈Set〈str[]〉〉: futures dict = init()
3: for State: q ∈ QMlin

do
4: State: q′ = GetNxtState(q, Mlin)
5: Set〈str[]〉: futureq = ComputeKFuture(Mlin, k, q)
6: Set〈str[]〉: future′q = ComputeKFuture(Mlin, k, q′)
7: futures dict[futureq].add(future′q)

8: return futures dict

1: function ALGORITHM(B): INFERMODEL

input: Set〈str[]〉 → Set〈Set〈str[]〉〉: futures dict
output: FSM

2: FSM: M = EmptyFSM()
3: for Set〈str[]〉: ftrsrc ∈ futures dict.keys() do
4: for Set〈str[]〉: ftrtrg ∈ futures dict[ftrsrc] do
5: AddEqState(M, ftrsrc)
6: AddEqState(M, ftrtrg)
7: AddTransition(M, ftrsrc,ftrtrg)
8: SetInitialAndTerminalStates(M)
9: return M

past research has focused on heuristics. Ilie and Yu [14] present
an algorithm for NFA reduction using invariant equivalences.

An equivalence relation over Q defines a partition over Q,
so the terms are used interchangeably.

Formally, a partition over Q is denoted by ρ =
{B1, B2, . . . , Bn}, where Bi is a block of states from Q,⋃

1≤i≤nBi = Q, and ∀i, j, Bi ∩Bi = ∅.
One may define a partial order ⊆ between partitions. Let

ρ, ρ′ denote two partitions of Q. Then, ρ ⊆ ρ′ iff ∀b ∈ ρ ∃b′ ∈
ρ′, b ⊆ b′.

Definition 4. An equivalence relation (≡) over Q is right-
invariant w.r.t. M iff:

1) ≡⊆ (Q \F )2 ∪F 2 (terminal and non-terminal states are
not equivalent)

2) ∀q, q′ ∈ Q, σ ∈ Σ, q ≡ q′ → δ(q′, σ) ≡ δ(q, σ)
(equivalent states lead to equivalent states on any letter)

Ilie and Yu [14] show that merging states that are equivalent
by any right-invariant relation does not change the language of
an NFA, and that there exists a unique largest right-invariant
partition over the states of an NFA.

They present a polynomial time algorithm that computes
the largest right-invariant equivalence. The algorithm starts
from a partition that separates non-terminal and terminal states.



Then, it iteratively searches for none-equivalent states (w.r.t.
to Def. 4) and refines the partition until reaching a fixed-point.
Finally, equivalent states are merged to obtain a smaller NFA.

In a later work, Ilie et al. [13] show that the largest right-
invariant relation ≡R is the coarsest stable refinement of the
partition {F,Q \ F} w.r.t. δ. Hence, it can be computed
using well-known existing partition refinement algorithms by
Kanellakis and Smolka [15].

Importantly in our context, the algorithm can be dually
applied for left-invariant equivalences, which are symmetrically
defined over the reversed automaton. Both reductions preserve
the language of the NFA, while empirically reducing it by 10%-
40%. Our past-equivalence reduction tailors the left-invariant
reduction for k-Tails.

IV. CONTRIBUTION: MANY PARAMETERS

We now present the first contribution of our work, mk-Tails,
a generalization of k-Tails from a single parameter, k, to many
parameters, k1 to kt.

Based on domain knowledge or on the task at hand, some
events may be considered by the engineer as more important
or more sensitive than others. For example, when analyzing
android apps, sensitive events may be API calls that access
sensitive resources [2]. Our generalized version allows the
engineer to vary the strength of the abstraction around different
subsets of the alphabet, making it less accurate around some
and more accurate around others.

A. Defining k-Tails with Many Parameters

The mk-Tails algorithm generalizes the original k-Tails.
As input, it takes a log, a set of distinct positive integer
parameters K = {k1, . . . , kt}, and a corresponding partition
of the alphabet Σ into disjoint subsets S = {S1, . . . , St}. The
output of mk-Tails is a k-FSM model that over-approximates
the log. Roughly, the algorithm ensures that for every Si ∈ S,
every event σj ∈ Si is associated with equivalence classes
with a future length of at least ki. To formalize, we define
the intersection of set of sequences seqs ∈ 2Σ≤k

with a set of
events S ∈ P(Σ) using a boolean function as follows:

seqs ∩ S =

{
True , ∃σ. ∈ S ∃seq ∈ seqs. ∃j. seqj = σ

False , otherwise

In other words, the set S intersects with seqs iff one of the
events in S appears in a sequence in seqs.

We now lift the k-Tails equivalence relation by replacing
the single k-future function futurek (see Sect. III) with a
generalized many-k function.

Definition 5 (gen-future function). Denote the maximal value
of k in K by kmax. The function gen-future : QMlin

×
(K,S) → 2Σ≤kmax , maps states in Mlin to k-sequences of
length at most kmax, where each state q ∈ QMlin

is mapped
to sequences, futureki(q), of length ki, s.t. Si∩ futureki(q) =
True and ∀j 6= i ∧ ki < kj , Sj ∩ futurekj (q) = False.

Intuitively, when using the gen-future function, equivalence
classes that are followed by sequences (see Def. of id in

Algorithm 2 ComputeGenFutures

1: function COMPUTEGENFUTURES(M,k sets arr, q)
input: Mlin: M, Array〈K, S〉: k sets arr (sorted desc. by
k), State: q
output: futureq: Set〈str[]〉 # future of length ki ∈ K

2: for ki, Si ∈ k sets arr do
3: future(ki)q = ComputeKFuture(M, ki, q)
4: if Si∩ future(ki)q then return future(ki)q

Sect. III) that include an event from Si, are based on k-futures
of at least ki.

Similar to the original future function, gen-future induces a
partition of the states of Mlin into equivalence classes E =
{e1, e2, . . . , em}, where each of the equivalence classes in E is
uniquely defined by its future sequences. Two states q1, q2 ∈ ei
iff gen-future(q1) = gen-future(q2).

Definition 6 (mk-FSM). The mk-FSM is a generalization of the
classical k-FSM, which is obtained when replacing the classical
k-future function (Sect. III) with the gen-future function.

Example 2. Consider the k-FSM in Fig. 4, where K, S
are defined as follows: (k1, S1) = (2, {lf}) and (k2, S2) =
(1,Σ\S1). Consider trace Tr3 in Fig. 1, and its corresponding
branch in Mlin, (q3

I , q
3
1 . . . , q

3
T ). Let us denote the state

preceding the fourth event on this branch, cd, by q3
4 . Clearly,

future1(q3
4) = {[cd]}, and future2(q3

4) = {[cd], [cd,lf]}.
To compute gen-future(q3

4), we compute S1 ∩ futurek1(q3
4),

and S2 ∩ futurek2(q3
4), and take the maximal k among the

pairs (ki, Si) that return true. Since both return true, we get
that gen-future(q3

4) = {[cd], [cd,lf]}.

Remark 1. The mk-FSM defined by mk-Tails, M , has similar
properties to the classical k-Tails model k-FSM. Specifically,
again, for a log L, every w ∈ L is accepted by M , i.e.,
L ⊆ L(ML); all the states of M are reachable from the initial
state qinit; and the accepting state, qacc, is reachable from all
states. In particular, when S = {Σ} and K = {k}, the output
of mk-Tails is the same as the output of the original k-Tails.
In this sense, mk-Tails is a conservative extension of k-Tails.

B. Computing the mk-FSM

To compute the generalized k-FSM, mk-FSM, we use
Alg. 1, but replace the calls to ComputeKFuture with
the function ComputeGenFutures, shown in pseudo-
code in Alg. 2. Similar to ComputeKFuture, as input,
ComputeGenFutures receives a model and a state q.
However, instead of a single k, the function receives an array of
pairs. Each pair 〈ki, Si〉 consists of an integer ki ∈ {k1, . . . , kt}
and a corresponding Si ⊆ Σ. The different Si are disjoint

and their union equals Σ, formally
t⋃
i=1

Si = Σ. The function

assumes a descending order of the pairs on the first component.
This ensures that for each state q, Alg. 2 avoids redundant
computations of futures with length less than the actual k
required for q.



Complexity. Denote the size of the pairs array by t. To
sort it, the algorithm requires O(t log(t)). This sorting is
performed once. Then, the only difference from Alg. 1 are
the calls to Alg. 2. We denote by kmax the maximal k
in K. The algorithm makes at most t loop iterations, in
which it makes at most kmax steps (computes k-future by
the ComputeKFuture func.) and performs an intersection
check. The intersects(Si, future(ki)q) function requires
ki · |Si| steps. Therefore, the extended algorithm adds a
factor that is bounded by t · max(K) · |Smax| per Mlin

state, where max(K) and Smax denote the largest k, and the
largest subset of events resp. Therefore, the overall complexity
is O(t · max(K) · |Smax| · |Len|e + t log(t)). Since Alg. 1
complexity is O(|Len|e · k) (see Sect. III), we get that the
increase in the complexity is only the multiplication by a
constant k̇ = t ·max(K) · |Smax|, i.e., O(|Len|e · k̇).

V. CONTRIBUTION: K-FSM REDUCTION

We now present the second contribution of our work, an
effective and efficient size reduction technique that preserves
the language of the k-FSM model.

A. Right and Left-Invariant Equivalence for k-FSM

To reduce the size of the k-FSM, one may consider using the
right-invariant equivalence (see Def. 4) and its symmetrical left-
invariant equivalence. These may be useful, since merging states
by these relations is language preserving (Ilie and Yu [14]).
Below we will show that in the context of k-FSM, the right-
equivalence reduction has no effect. Then, in contrast, we
will show that in the context of k-FSM, the left-equivalence
reduction is effective and can be efficiently computed.

Theorem 1. Consider a k-FSM M , and a pair of states e, e′ ∈
QM . Let ≡R denote a right-invariant equivalence relation over
Q. Then, e 6≡R e′.

Proof. Assume towards a contradiction two different states e
and e′ s.t. e ≡R e′. Condition 2 of Def. 4 implies that any
transition from q can be matched by an equivalent transition
from q′. Therefore, by inductively applying ≡R, we get that for
any sequence seqk = 〈e, e1, . . . , ek〉 that belongs to id(e), there
exists a sequence seq′k = 〈e′, e′1, . . . , e′k〉 s.t. ei ≡R e′i. Since
R is an equivalence relation, the same argument holds from
any seq′k ∈ id(e′). Hence, e and e′ have similar futures, i.e,
id(e) = id(e′) → e = e′, which contradicts the assumptiona
that e and e′ are two different states.

Corollary 2. As an immediate corollary, any k-FSM model is
minimal w.r.t. any right-invariant relation (i.e., no two states
can be merged).

The implication of Corollary 2 is that using any right-
invariant relation for reducing a k-FSM M is ineffective.

In contrast to the right-invariant relations, merging states by
left-invariant relations is a very effective method for reducing
the size of a k-FSM. As an example, consider a log with
the following three traces t1 = 〈a, b, c〉, t2 = 〈a, b, d〉, t3 =
〈a, b, e〉. Fig. 6 (top) shows the output of running k-Tails with

Fig. 6: A k-FSM (top) obtained by running k-Tails over L = {〈a, b, c〉,
〈a, b, d〉, 〈a, b, e〉} with k = 2, and its left-invariant reduction (bottom)

k = 2 over the log. As can be seen, states {2, 5, 7} are left-
equivalent, as they all have a single incoming transition from
state 1 with the label ‘a’. Therefore, we can merge them without
changing the language of the model. Note that k-Tails splits
those states due to the future divergence in states {3, 6, 8}.
Such redundant splits are common in k-FSMs. After applying
left-equivalence once, the succeeding states {3, 6, 8} become
left-equivalent and can be merged, which results in the model
in Fig. 6 (bottom).

In its special application to k-Tails, we call the left-invariant
equivalence past-equivalence.

B. Computing Past-Equivalence Reduction of a k-FSM

We now present an efficient algorithm for computing
past-equivalence reduction of k-FSM. Most importantly, our
algorithm exploits the structure of the k-FSM. In contrast to
the algorithm presented by Ilie and Yu [13], [14], which starts
from a coarse partition and employs refinement operations until
convergence, our algorithm starts from a refined partition and
employs an iterative coarsening operation until convergence.
While our procedure is general, it converges on any k-FSM
after at most k+1 iterations, yielding an improved complexity
over the state-of-the-art.

Alg. 3 presents the pseudo-code for past-equivalence reduc-
tion implementation. The algorithms input is the futures dict
constructed by Alg. 1-A, which maps future to futures. Recall,
that each future corresponds to a state in the k-FSM, and is
represented by a set of strings of length kmax or less.

The algorithm uses the futures dict to construct δ (line 2)
from which it computes the transitions that are incoming each
state using the ComputeIncomingTransitions function.
Then, the algorithm initializes an initial partition of the states,
where every state is mapped to a single state block, with a
unique block id (lines 5-7).

The algorithm performs a series of block merging iterations
(Alg. 3, lines 8-27), until reaching a fixed-point (no more
blocks can be merged). At the beginning of each iteration,
the algorithm computes the pst eqv states dictionary, which
maps the sets of incoming transitions (at the block level)
to states that succeed them (lines 9-16). To this end, the
algorithm iterates over the incm dict dictionary, and computes
the set of incoming transitions per state using the state2block
dictionary. Then, it calls AddPastSet, which adds the state
q to the past-equivalence class of block in trns (line 16).
Importantly, after iterating all states, this dictionary holds past-
invariant equivalence classes w.r.t. the current partition. Then,



Algorithm 3 ComputePastEquivalence

1: function ALGORITHM: COMPUTEPASTEQUIVALENCE

input: Set〈str[]〉 →Set〈Set〈str[]〉〉: futures dict
output: State→Int: state2block

2: Set〈Transition〉: δ = GetKFSMTransitions(futures dict)
3: State→Set〈Transition〉: incm dict = /
4: ComputeIncomingTransitions(δ)
5: Int: bid = 0
6: State→Int: state2block = {}
7: for q ∈ incm dict.keys() do state2block[q] = bid++
8: while True do
9: # compute past-equivalence by current partition

10: Set〈Transition〉→Set〈State〉: pst eqv states = {}
11: for State: q ∈ incm dict.keys() do
12: Set〈(Int, σ)〉: block in trns = ()
13: for Transition: t ∈ incm dict[q] do
14: Int: inc block id = state2block[tsrc]
15: block in trns.add((inc block id, tσ))
16: AddPastSet(pst eqv states, block in trns, q)
17: # check if new past-equivalence found
18: Bool: fixed point = True
19: for Set〈Transition〉: pst eqv ∈ pst eqv states do
20: Set〈State〉: states = pst eqv states[pst eqv]
21: blocks = ()
22: for q ∈ states do blocks.add(state2block[q])
23: if |blocks| > 1 then
24: fixed point = False
25: # coarsen partition
26: bid += 1
27: for q ∈ states do state2block[q] = bid
28: if fixed point then return state2block

the algorithm iterates over each past-equivalence class and
checks if it includes states that belong to more than a single
block according to the current partition (lines 19-27). If so, it
merges such states by mapping them to a new block id, and
updates the state2block dictionary (lines 26-27). Finally, the
algorithm reaches a fixed-point when no new block is added,
and returns the last partition (state2block).

The correctness of our algorithm is based on the fact that
it finds the unique coarsest past-invariant equivalence. Its
complexity of O(|δ| · k) is based on the fact that it reaches the
fixed-point after at most k+1 iterations, and in each iteration
(lines 8-28) it iterates over |δ| twice.

Example 3. Consider our example k-FSM in Fig. 6, which was
generated by running k-Tails with k=2. We focus on the states
that are merged. Initially, the algorithm computes the incoming
transition dictionary (incm dict), and maps each state to a
singleton block (line 2-3). Let us denote the initial block of
each state by the state id. At the start of the first iteration,
the algorithm computes the incoming transitions at the block
level (lines 9-16) and updates the past-equivalence dictionary
(pst eqv states). States {2, 5, 7} all have a single incoming

transition from block b1 with an ‘a’ label. Therefore, they are
added to a single equivalence class (line 16).

Then, the algorithm loops over the past-equivalence sets
in pst eqv states, and maps states that are grouped together
and are associated with different blocks, to a new block id
(lines 19-27). States {2, 5, 7}, which do not share a block, are
mapped to a new block, b10 (line 27). Since a new block was
added, the algorithm makes another iteration.

On the second iteration, the algorithm recomputes the past-
equivalence dictionary. This time, states {3, 6, 8} all have a
single incoming transition from b10 with a ‘b’ label. Therefore,
they are added to a single equivalence class, and are later
merged to a new block b11.

Finally, the algorithm makes one last iteration. Since no two
other states are past-equivalent, the algorithm reaches a fixed-
point after 3 iterations, and returns the following mapping:
{0} → b0, {1} → b1, {2, 5, 7} → b10, {3, 6, 8} → b11, {4} →
b4, {5} → b5.

We list three theorems by which we state the correctness
and complexity of Alg. 3. The theorems are stated w.r.t. a
k-FSM, but trivially hold for a mk-FSM. Formal proofs are in
supporting materials [1].

Theorem 3. Algorithm 3 terminates after at most k+1 itera-
tions on any k-FSM, with a maximal future of k.

Theorem 4. Let ρi, ρi+1 denote the partitions obtained by
the iterationi, iterationi+1 of Alg. 3 resp. Then, ρi ⊆ ρi+1

(see Sect. III), and ρi+1 unifies any blocks in ρi that are past-
equivalent.

Theorem 5. Algorithm 3 terminates on the coarsest past-
equivalence partition ρmax, where ρmax is the partition such
that ∀ρ, if ρ is a past-equivalence partition, then ρ ⊆ ρmax.

VI. IMPLEMENTATION, VALIDATION, AND EVALUATION

A. Implementation and Validation

We implemented k-Tails, mk-Tails, and the past-equivalence
reduction in Java. The end-to-end implementation allows
the engineer to set up a mapping between subsets of the
alphabet and their corresponding ks, and to apply k-FSM
past-equivalence reduction. It computes and visually presents
a k-FSM similar to the one in Fig. 3. We made it available as
a prototype web application for review and experiments. We
encourage the interested reader to check it out in supporting
materials [1].

Further, to test the scalability of past-equivalence reduction
(Alg. 3), we compared it against Kanellakis and Smolka [15]
(see Sect. III-C). We followed the description of the algorithm
and implemented it in Java.

We validated our implementation as follows. First, we run
small examples like the ones used in Sect. II, where we were
able to manually inspect and validate the correctness of the
output. Second, we added tests for the following assertions:
(1) each trace from the log is accepted by the model, (2) the
past-equivalence reduction does not change the language of
the k-FSM, (3) the past-equivalence reduction yields identical



model to that of Kanellakis and Smolka [15]. We used Brics [7],
a well-known automaton Java library, to validate assertions
1 and 2, and compared the number of states and transitions
in the reduced models to validate assertion 3. The validations
increased our confidence in the correctness of our ideas and
implementation.

B. Research Questions

We consider the following research questions:
RQ1 Can we efficiently compute mk-Tails?
RQ2 Can we reduce model size and increase conditional
accuracy around sensitive events using mk-Tails?
RQ3 Can we efficiently compute past-equivalence reduction
over mk-Tails?
RQ4 Can past-equivalence reduction over mk-Tails effectively
reduce the size of the model?

C. Logs, Setup, and Measures

SET1. We used 10 finite-state machine models in our
evaluation, all taken from the literature [17], [20], [25]–[27].
The models vary in size and complexity, i.e., the alphabet size
ranges from 7 to 42, the number of states ranges from 6 to 22,
and the number of transitions ranges from 15 to 209. From
these 10 models we generated logs using a publicly available
trace generator from Lo et al. [20], configured to provide state
coverage of four visits per state and a minimum of 1000 traces.
These yielded logs of roughly 1000 traces each. The complete
list of models and their statistics, and the generated logs, are
available in supporting materials [1].
SET2. In addition, we used six real-world logs we have

obtained from a large telecommunication company. These logs
have an alphabet size that ranges from 21 to 46, number
of traces from 42 to 204, number of events from 1169 to
9252, and average trace length from 38.43 to 99.98. The logs
(anonymized) are available in supporting materials [1].

To evaluate mk-Tails, we selected a subset of events from
the log. We defined a random set of events to be “sensitive”
events, and assigned them with a higher k than the rest of the
events.

To measure the ability of mk-Tails to reduce noise around
sensitive events, we follow a similar procedure to the one
suggested by Lo and Khoo [17].

First, we define the notion of precision. Let us consider a log
L and the mk-Tails model M inferred from it. Let us consider
a sample of the traces from M , and denote it by L′. We define
the precision of the model as the fraction of traces from L′

that appear in the log L, i.e., P=|L′ ∩ L|/|L′|.
Since we focus on the sensitive events, we extend the notion

of precision to conditional precision, which only accounts for
traces containing at least one sensitive event.

More formally, let S be a set of sensitive events. Further, let
us denote by L′S , the set of traces from L′ that include events
from S, i.e., L′S = {t|t ∈ L′ ∧ ∃e ∈ S s.t. e appears in t}.
Then, the conditional precision w.r.t. S is defined as follows:
CP=|L′

S ∩ LS |/|L′
S |.

Remark 2. Since k-Tails models are an over-approximation
of the log, their recall w.r.t. the log equals 1. Hence, we did
not compute it.

Remark 3. We chose to compare precision w.r.t. the log and
not w.r.t. the model, as was done by Lo and Khoo [17]. We do
so, since our underlying assumption that larger ks yield more
accurate models holds w.r.t. the log, and not w.r.t. the model. We
do not make any claims about the generalization capabilities
of k-Tails to learn new behaviors from the observed ones, but
merely focus on its ability to compactly capture behaviors that
appear in the log, without introducing much noise.

To measure the ability of our algorithm to reduce the model
size, we define the model size reduction. Let M1 and M2

denote two models. We denote by |M | the total number of
states and transitions in M . Then, the size reduction of M1

w.r.t. M2 is defined as 1-|M1|/|M2|.
Finally, we measure the running times. In measuring the

running time we include the time of parsing the logs and
computing the models. In RQ1 and RQ2, by mk-Tails, we
refer to Alg. 1 combined with Alg. 2. In RQ3 and RQ4, we
refer to Alg. 3. We executed all experiments on an ordinary
laptop computer, Intel i7 CPU 2.6GHz, 16GB RAM with
Windows 10 64-bit OS, Java 1.8.0 161 64-bit. We executed all
runs at least 10 times, to average out measurement noise from
the Java execution. We report average and median running
times.

D. Experiments and Results

RQ1 To answer RQ1, we conducted the following experiment.
We run k-Tails and mk-Tails on the logs of SET1 and SET2.
For k-Tails we used k = 2. For mk-Tails we randomly selected
10% of the log alphabet as sensitive events. For mk-Tails,
for the none sensitive events we used k = 2, and for the
sensitive events we used k′ ∈ {3, 4, 5} (in three different runs).
We measured the running times. In this experiment, we did
not include the log reading time, which is common to both
algorithms.

Fig. 7 shows the average running times of k-Tails and
mk-Tails for each of the logs (SET1 followed by SET2), in
milliseconds. For each log, the blue and orange columns depict
k-Tails and mk-Tails (Alg. 1 and Alg. 2) average running times
resp. In all, the running time for mk-Tails was higher than the
one for k-Tails. Overall, mk-Tails adds an overhead that ranges
from 69.55% to 465.58%, with an average increase of 259%.

Finally, in absolute terms, Fig. 7 shows that the total average
running times of mk-Tails in all logs is below 200 milliseconds.
This demonstrates the applicability of mk-Tails to different
logs of realistic sizes.

To answer [RQ1], computing mk-Tails does not come for
free, however, the overhead above k-Tails is limited. Running
mk-Tails with 10% of its alphabet defined as sensitive, for
a variety of different logs with thousands of traces and tens
of thousands of events, did not take more than a second.
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Fig. 7: Average running times (ms) of k-Tails (blue), mk-Tails (orange)
for k = 2, k′ ∈ {3, 4, 5}, and 10% of alphabet as sensitive events.

TABLE I: mk-Tails conditional precision and size reduction

Log k=1 k’=3 k’=4 k’=5
CP CP Size Red. CP Size Red. CP Size Red.

RapidMiner 0.32% 39.40% 41.62% 39.44% 64.33% 40.22% 73.14%
CVS 0.98% 96.52% 32.07% 96.52% 50.45% 96.52% 62.24%
DatagramSocket 0.00% 86.02% 33.64% 89.16% 37.78% 90.38% 37.59%
MultiCastSocket 0.03% 76.24% 63.06% 84.34% 66.15% 85.26% 64.50%
Socket 0.00% 99.08% 59.50% 99.38% 66.38% 99.48% 65.64%
URL 0.00% 86.38% 64.23% 88.00% 64.55% 88.10% 60.74%
Formatter 0.16% 39.24% 45.57% 67.44% 47.13% 74.40% 43.40%
StringTokenizer 0.28% 36.40% 36.18% 70.14% 35.40% 77.28% 29.93%
SSH 0.10% 53.48% 15.93% 61.34% 14.91% 64.30% 11.48%
TCP/IP 0.08% 46.02% 52.85% 61.14% 60.03% 78.26% 54.99%
L1 0.00% 81.58% 50.03% 88.34% 64.00% 91.54% 69.59%
L2 0.00% 88.64% 47.82% 95.88% 59.35% 98.26% 61.79%
L3 0.00% 94.90% 31.55% 98.90% 46.43% 99.68% 55.36%
L4 0.00% 97.12% 51.23% 98.36% 71.92% 99.20% 80.21%
L5 0.01% 88.50% 49.29% 95.68% 61.60% 98.72% 64.49%
L6 0.03% 96.84% 51.25% 98.80% 64.49% 99.00% 67.85%

RQ2 To answer RQ2, we compared the models produced
with mk-Tails against models produced with a single k in
terms of size and conditional precision (CP), by conducting
the following experiment. We run k-Tails, setting k = 1 as
a baseline. Then, we randomly selected a single event from
the alphabet of each log as sensitive event. To measure the
effectiveness of mk-Tails in improving the conditional precision,
we first computed the precision of the baseline model (i.e.,
k = 1). We run a random trace generator (Lo et al. [20]) over
it, and produced 500 traces that included the sensitive event.
Then, we measured its conditional precision (Table I, second
column from the left) w.r.t. the original log.

To measure the ability of mk-Tails to filter noise around
sensitive events, we measured its conditional precision w.r.t. the
log produced by the baseline model (k = 1) (Table I, columns
3, 5, 7 from the left). That is, we only accounted for traces
that were accepted by both the small k-Tails model and the
more refined mk-Tails model. To minimize the potential bias
of the random choice of the sensitive event, we repeated the
selection of the sensitive event 10 times per log.

As can be seen, the conditional precision varies across
models and is much greater in comparison to k = 1. Further,
as expected, it increases with k′: we measured an average CP
of 75.39%, 83.30%, 86.28% for k′ ∈ {3, 4, 5} resp.

Table I also shows the size reduction in comparison to
running k-Tails with an increased k′. That is, we compared the

TABLE II: Median running times, in milliseconds, of Alg. 3 and
Kanellakis and Smolka [15], when running with k ∈ {2, 4, 6, 8, 10}
over log sets SET1 and SET2.

k 2 4 6 8 10
Alg. 3 17.0 40.0 62.0 84.0 82.0

Kanellakis and Smolka [15] 93.5 1705.5 13196.5 15784.0 18980.5

size of mk-Tails models with (k, k′) to that of k-Tails models
with k′. For example, the value 41.62% in the row for model
RapidMiner, column k′ = 3, means that 1-|M1|/|M2| =
0.4162, where M1 is the model inferred using mk-Tails with
k = 1 and k′ = 3, and M2 is the model inferred using k-Tails
with k = 3. As can be seen, mk-Tails is able to dramatically
reduce the size of the model across different logs. Further, the
reduction gains increase with k′, with a median of 47.45%,
59.34%, 60.73% for k′ ∈ {3, 4, 5} resp.

To answer [RQ2], we have evidence that mk-Tails can yield
significant reduction in the model size while increasing the
conditional precision.

RQ3 To answer RQ3, we compared the running time
of the general NFA reduction algorithm (Kanellakis and
Smolka [15]) with the past-equivalence reduction (Alg. 3)
for k ∈ {2, 4, 6, 8, 10} over log sets SET1 and SET2.

Table II reports the median absolute running times of
applying past-equivalence reduction with Alg. 3 and Kanellakis
and Smolka [15], in milliseconds, as function of k across the
logs. As can be seen, Alg. 3 requires an order of magnitude
less time than the competing algorithm.

Figure 8 shows a boxplot of the running time as function
of k across different logs, where boxes labeled by PM_k and
SM_k correspond to the application of Alg. 3 and Kanellakis
and Smolka [15] over k-FSMs resp. Note that the boxplot
does not include outliers due to the long running times of the
Socket logs when running with Kanellakis and Smolka [15].
The boxplot shows that the running times of Kanellakis and
Smolka [15] are higher than those of Alg. 3, for all logs and
all values of k.

To explain the large difference in running times, we inves-
tigated the number of iterations performed by each of the
algorithms. Since both algorithms move between partitions via
iterations that require O(|δ|) until reaching a fixed-point, this
factor is key in analyzing the complexity of the algorithms.

By Theorem 3, our algorithm converges in at most k+1
iterations. Table III shows the average number of iterations
until Kanellakis and Smolka [15] reaches a fixed-point for
different values of k across the logs. As can be seen, the
number of iterations in Kanellakis and Smolka [15] rapidly
increases with k, in particular when moving between small
values of k. This explains the superior running times of Alg. 3.

To answer [RQ3], we have evidence that Alg. 3 scales
well, and improves over the state-of-the-art in terms of
computation time.



TABLE III: Average number of iterations made by Kanellakis and
Smolka [15], when running with k ∈ {2, 4, 6, 8, 10} over log sets
SET1 and SET2.

k 2 4 6 8 10
Iterations 2.81 132.31 198.87 225.81 234.50
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Fig. 8: Average running times (ms) (log scale) of Alg. 3 (PM) and
Kanellakis and Smolka [15] (SM) as function of k, when run over
SET1 and SET2.

RQ4 To answer RQ4, we report the model size before and
after applying past-equivalence reduction. We run the reduction
Alg. 3 over models produced with k ∈ {2, 4, 6, 8, 10}, over
log sets SET1 and SET2.

Table IV shows the median size of the k-Tails models, the
median size of the reduced k-Tails models, and the median
size reduction per model, for different values of k.

As can be seen, the algorithm effectively reduces the size
of the models across all k values. The median size reduction
reduces with k, but is above 15% across all values of k. Further,
the measured size reductions are consistent with the ones
reported by Ilie and Yu [14] and are in the range 10%− 40%.

To answer [RQ4], we have evidence that Alg. 3 effectively
reduces the size of k-Tails models. The algorithm achieves
significant size reduction across different logs and for
different values of k.

Threats to validity. We consider the following threats to the
validity of our results. First, our implementation may have bugs.
To mitigate this, we validated our implementation extensively,
see Sect. VI-A. Second, the logs used may not be representative
of real-world logs. To address this, we used a sample of
real-world logs from a large telecommunication company and
synthetic logs we generated from real-world models borrowed
from prior works, with high variability in number of events,
trace length, etc., see Sect. VI-C.

VII. DISCUSSION AND RELATED WORK

We discuss alternatives to our solutions as well as limitations
and implications of our work. We then continue to discuss
related work.

TABLE IV: Size reduction over log sets SET1 and SET2.

k 2 4 6 8 10
k-Tails model size (median) 1411.0 4720.5 6294.0 6868.0 6920.0

Reduced k-Tails model size (median) 604.0 2863.0 5424.0 5960.0 6065.0
Size reduction per model (median) 36.85% 22.37% 28.40% 21.49% 16.82%

A. Discussion

Alternatives to the many parameters of mk-Tails. One may
suggest other methods to focus on events of interest. First, for
example, filtering on the log (e.g., ignoring infrequent events
or traces, or ignoring events that are considered uninteresting).
Second, slicing on the finite-state machine model [3].

We view these methods as complementary to mk-Tails. mk-
Tails allows fine-grained control over the accuracy around the
selected more sensitive events while not giving up the context
that is often lost when using filtering or slicing techniques.

Alternative reduction algorithm. Ilie et al. [13] note that
one may use the well-known Paige-Tarjan (PT) algorithm [24]
to apply the past-equivalence reduction. This algorithm has
time complexity of O(|δ|log(|Q|)), which is better than the
O(|δ||Q|) of Kanellakis and Smolka [15]. Both algorithms,
however, use the same approach of starting from a coarse
partition and apply a series of split iterations, each with a cost
of O(|δ|).

In contrast, our algorithm uses an opposite approach. It
starts from a refined partition and, importantly, applies only
at most k+1 state merging iterations (each with the same cost
of O(|δ|)). The large number of iterations made by Kanellakis
and Smolka [15] (see Table III) indicates that reducing the
number of iterations to a constant rather than to a log of the
number of states is expected to be competitive. We leave a
direct comparison with PT to future work.

Is precision monotonic with k? One may expect that increas-
ing the value of k would increase the precision of the inferred
model relative to the log. However, this is not necessarily the
case. Nevertheless, for every log there is a large enough k such
that precision equals 1. This applies to k-Tails as well. As for
conditional precision, when one only increases k′, a value of
1 may never be obtained, due to possible imprecision entailed
by other, non-sensitive, events.

Under which conditions does mk-Tails provide size reduc-
tion? mk-Tails is a heuristics. Specifically, assigning a higher
value of k to a small subset of the events rather than to all of
them, will never increase the model size but does not guarantee
to reduce it. For example, when the sensitive events for which
we assign the higher k immediately succeed all non-sensitive
events, in one or more of the traces. On the other hand, when the
sensitive events appear in relative isolation, as part of a small
number of unique k-sequences, we will obtain a significant
reducution in the model size. In practice, as our experiments
demonstrate, mk-Tails is able to dramatically reduce the size
of the model across different logs, see RQ2 in Sect. VI.

Implications to anyone who uses k-Tails. mk-Tails allows
engineers to control the detailedness of the model in different



areas based on domain knowledge or the specific task at hand.
Instead of a single level of abstraction, increasing k improves
model accuracy around selected events, while reducing the
model size in comparison to a single global k. Although mk-
Tails allows much flexibility in choosing different ks to different
subsets of the alphabet, in practice, choosing these ks may not
be easy. We believe that in practice one would be satisfied with
defining only a simple binary partition between “interesting”
and “less interesting” events, and assigning a higher value of
k to the former and a lower value of k to the latter.

B. Related Work

We discuss model inference works that deal with the notion
of model size and accuracy.

Some authors have used precision, recall, and F-measure to
quantitatively evaluate the quality of the inferred models [11],
[16]–[19], [27], [30]. Lo and Khoo [17], [18] have also used
co-emission and PS. In all of these, the inferred models are
compared against the ground-truth models from which the logs
were produced. The comparison is done by sampling traces
from both models and performing acceptance testing. Thus,
all these require ground-truth models, which are available in
experiments but not available in real-world setup.

In our evaluation of mk-Tails, we followed a different
approach to evaluate the accuracy of the generated models.
We compared the inferred model against the log, not against
the ground-truth model from which the log was generated
(see Rem. 3). We demonstrated how increasing the value
of k increases accuracy but comes with the price of larger
models. We have also defined and used conditional precision,
specifically in order to show that mk-Tails is able to increase
conditional precision around events of interest while paying a
rather low cost in additional model size.

Many works have used, implemented, or extended k-Tails,
e.g., [2], [4], [5], [8]–[10], [12], [16]–[23], [27], [28], [31]. We
cite them here as evidence for the popularity of k-Tails in the
literature, which motivated our choice of this algorithm as a
baseline for our work on size vs. accuracy. To our knowledge,
none of these works has considered a generalization from
one to many parameters and thus all are limited to the single
level of abstraction defined by the choice of k. In addition,
none has applied post-processing size reductions. Our size
reduction is different than the general NFA reduction as its
better theoretical complexity and better empirical performance
relies on the specific context of the k-Tails algorithm.

VIII. CONCLUSION AND FUTURE RESEARCH

To deal with the tradeoff between size and accuracy in model
inference, we presented mk-Tails, a generalization of k-Tails
from single to many parameters, which enables fine-grained
control over the abstraction on different subsets of the event
alphabet. We have further presented an efficient algorithm
based on past-equivalence, to reduce the size of the resulting
model without affecting its accuracy. We implemented our
ideas in a prototype web-based application, which we have
made available for experiments.

Our evaluation over logs generated from models from the
literature and additional logs provided to us by our industrial
partner, shows that mk-Tails can be computed efficiently, with
only little overhead above the classical k-Tails. Moreover, it
shows that the use of mk-Tails can dramatically reduce model
size, while maintaining high conditional accuracy for events of
interest. Finally, it shows that our past-equivalence reduction,
when applied to the models generated by mk-Tails, is efficient
and effective in reducing model size.

The important implications for any work that uses k-Tails
is to consider finer control over the abstraction by assigning
different values of k to different subsets of the alphabet, based
on domain knowledge.

We consider the following future research directions. First,
to improve the practicality and applicability of our work, it may
be interesting to look at (semi-)automated means to translate
domain knowledge or data on the task at hand into the selection
of the subsets of events to consider “sensitive”.

Second, once the subsets of events are given, how should the
values of the ks be selected? One may suggest to automate the
choice of different ks based on target (conditional) precision
given by the engineer. Note that this may indeed be possible,
since in our framework, computing precision does not require
a ground-truth model.

Third, one could extend our own statistical approach [8]
from k-Tails to mk-Tails. Following this work, it may be useful
to strengthen accuracy computations with statistical guarantees.
Intuitively, when sampling from a large log, we may want
to stop sampling when we have enough confidence that the
estimated accuracy we have obtained is close enough to the
accuracy of the model that one would have inferred from the
complete log.

Fourth, note that mk-Tails, like the classic k-Tails, deals with
the tradeoff between size and accuracy in a way that abstracts
away the frequencies of the different traces or k-sequences in
the log. In some domains and for some applications, however,
these frequencies are important and should be represented in
the inferred model. There, it would be necessary to extend
mk-Tails and the notion of accuracy to account for frequencies.

Finally, we consider an interactive application inspired by
mk-Tails, where the engineer can dynamically increase and
decrease the local value of k on selected states or events. This
will result in a dynamic details-on-demand approach to model
inference. We leave all these for future work.
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[19] D. Lo, L. Mariani, and M. Pezzè. Automatic steering of behavioral
model inference. In ESEC/SIGSOFT FSE, pages 345–354. ACM, 2009.

[20] D. Lo, L. Mariani, and M. Santoro. Learning extended FSA from
software: An empirical assessment. Journal of Systems and Software,
85(9):2063–2076, 2012.

[21] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software
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