
Spectra Language &
Spectra Tools User Guide

Software Modeling Lab, Tel Aviv University

May 2023

1

Table of Contents
Introduction 4

Outline of this Document 4
Comments and Suggestions 4
The SYNTECH Project 4

The Spectra Language 6
Importing other Spectra Files 6

Example 6
Specification Declaration 6

Example 7
Remarks 7

Variable Declarations 7
Example 7
Variable Types 7
Arrays 8
Remarks 8

Assumptions and Guarantees 8
Example 9
Remarks 10
Safety Assumptions/Guarantees and State Invariants 10

PastLTL Operators 11
Example 11
Remarks 12

Type Aliases 12
Example 12
Remarks 13

Defines 13
Example 13
Example 14
Remarks 14

Predicate Definitions 14
Example 14
Remarks 15

Monitor Definitions 15
Example 16
Remarks 16

Counter Definitions 17

2

Example 17
Remarks 18

Pattern Definitions 18
Example 18
Remarks 19
Further reading 20

Weight Definitions 20
Example 20
Remarks 21
Further reading 21

Quantifiers and Variable Indexes 21
Example 21
Remarks 22

Triggers and Regular Expressions 22
Regular Expressions 23
Triggers 23
Further reading 24

Spectra Tools Analyses 24
Strategy Synthesis 25

Concrete Controller 26
Symbolic Controller 26
Further reading 27

Strategy Synthesis with Weights 27
Further reading 27

Counterstrategy Synthesis 27
Concrete Counterstrategy 28
Symbolic Counterstrategy (JVTS) 29
Remarks 29
Further reading 29

Unrealizable Core Computation 29
Example 30
Further reading 30

Well-Separation Check 31
Example of a non-well-separated environment specification 31
Non-Well-Separated Core Computation 32
Further reading 32

Complete Example Specifications 33
Blink5.spectra 33

3

Docking.spectra 34
Elevator.spectra 35
ElevatorUnrealizable.spectra 36
NonWellSep.spectra 36
Rover.spectra 38
TrafficLight.spectra 39
DiningPhilosophers.spectra 40

4

Introduction
Spectra is a specification language for reactive systems. The Spectra Tools are a
collection of tools for performing various analyses of Spectra documents.

Outline of this Document

This document gives an overview of the Spectra language and the Spectra Tools. First,
we describe the Spectra language, a specification language for reactive systems, in
Chapter Spectra Language. Then we describe the Spectra Tools and the analyses they
support in Chapter Spectra Tools Analyses. Parts of example specifications appear
throughout the document. The complete example specifications can be found in
Chapter Example Specifications.

Comments and Suggestions

We are currently improving the Spectra language and enhancing the capabilities of the
Spectra Tools. We are interested in feedback on this document, the language, and the
tools. Please do not hesitate to get in touch via the contact information found on our
web pages:

https://www.cs.tau.ac.il/~maozs/
https://ringert.blogspot.com/

The SYNTECH Project

The Spectra language and Spectra Tools are part of the larger SYNTECH project.1

Reactive synthesis is an automated procedure to obtain a correct-by-construction
reactive system from a given specification. Examples of these systems include the
software controllers of robotic systems. Despite recent advancements on the theory
and algorithms of reactive synthesis, e.g., efficient synthesis for the GR(1) fragment of
linear temporal logic, many challenges remain in bringing reactive synthesis
technologies to the hands of software engineers.

1 Website of the SYNTECH project: https://smlab.cs.tau.ac.il/syntech/

https://www.cs.tau.ac.il/~maozs/
https://ringert.blogspot.com/
https://smlab.cs.tau.ac.il/syntech/

5

The SYNTECH project is about bridging this gap. It addresses challenges that relate to
the change from writing code to writing specifications, and the development of tools to
support a specification-centric rather than a code-centric development process.

6

The Spectra Language
The Spectra language is a specification language for reactive systems. The language
supports temporal constructs, including selected temporal operators. Spectra also
provides high-level language constructs that allow engineers to make concepts like
monitoring or counting explicit in specifications.

We give an overview of the different elements of the language. We introduce elements
by a brief motivation, examples of the syntax of elements, and optional remarks.

Importing other Spectra Files

Spectra supports a mechanism for importing other Spectra documents. An import
makes available the following elements from imported document:

● Pattern Definitions
● Predicate Definitions unless the predicate body references variables of the

imported specification

The keyword for importing other files is import. The keyword has to be followed by a
relative path enclosed by quotation marks of the file to import. Multiple files can be
imported using separate import statements. Imports precede the Specification
Declaration.

Example

import "../patterns/DwyerPatterns.spectra"

import "../patterns/MyPatterns.spectra"

The above example imports patterns defined in the files DwyerPatterns.spectra and
MyPatterns.spectra.

Specification Declaration

Each Spectra document is a specification. Specifications have names. Each
specification is defined in a separate file.
The keyword for specifications is spec.

7

Example

spec Rover

Remarks

● As a convention, the name of a specification should match the name of the file it
is defined in.

● As a convention, the name of a specification should be capitalized.
● Currently, there is no technical significance to the name of a specification.

Variable Declarations

All variables in a specification are either environment controlled (input) or system
controlled (output). Variable declarations state the type and the name of the variable.

Example

The following example declares an environment controlled variable gravityDetected of
type boolean. In addition, it declares two system controlled variables.

The variable speed can have integer values from 0 to 7 (including 0 and 7). The variable
mode can have one of the three enumeration values SEEK, MEASURE, or IDLE.

env boolean gravityDetected; // whether sensors detect gravity

sys Int(0..7) speed; // the speed set by the system

sys {SEEK, MEASURE, IDLE} mode; // current system mode

Variable Types

Spectra supports the following elements to be provided as variable types:

● boolean for Boolean variables with values true and false
● Int(..) for and to declare bounded integer variables𝑙 𝑢 𝑙, 𝑢 ∈ ℕ 𝑙 < 𝑢
● Enumerations of concrete values, e.g., {SEEK, MEASURE, IDLE}

● Type Definitions

8

Arrays

All variables can be declared as (multi-dimensional) arrays by appending the size of
each dimension inside square brackets. The following example declares a
one-dimensional array (of length 2) of bounded integers from 0 to 7:

sys Int(0..7)[2] pos;

Arrays are accessed as follows:

pos[0]=5 // valid access of cell 0
pos[2]=5 // ERROR index out of bounds

Remarks

● Variable names must be unique.
● As a convention, variable names should start with lowercase letters.

Assumptions and Guarantees

Intuitively, in every state the environment provides a next input via environment variables
(without seeing what the system will output in response). Then, the system outputs the
next output via system variables based on the current state and the next input the
environment has provided.

We describe the behavior of environments by assumptions on the environment behavior
observable from the variables it controls. There are three basic types of assumptions:

● Initial assumptions: constraints over initial states of the environment (may only
include environment variables)

● Safety assumptions starting with the temporal operator always/alw: constraints
over current and next state (may only include next() around environment
variables)

● Liveness assumptions starting with the temporal operator alwaysEventyally/
alwEv: may include the next() operator around any variable

9

We describe the required behavior of the system by guarantees. There are three basic
types of guarantees in Spectra which differ from assumptions in the variables that may
appear in them:

● Initial guarantees: constraints over initial states of the environment (may include
any variable)

● Safety guarantees starting with the temporal operator always/alw: constraints
over current and next state (may include next() around any variables)

● Liveness guarantees starting with the temporal operator alwaysEventyally/
alwEv: may include the next() operator around any variable

A special kind of assumptions and guarantees supported by Spectra in addition to the
ones above are instances of Pattern Definitions.

Example

The following example shows an initial assumption with the name
“inBeginningNoGravity”, a safety assumption without a name, and a liveness
assumption with the name “eventuallyDetectGravity”.

asm inBeginningNoGravity:

gravityDetected = false;

// once gravity is detected it does not go away

asm

alw gravityDetected -> next(gravityDetected);

asm eventuallyDetectGravity:

alwEv gravityDetected;

The next example shows an initial guarantee without a name, a safety guarantee
without a name spanning multiple lines, and a liveness guarantee with the name
“doSomethingUseful”.

gar mode = IDLE; // start in IDLE mode

gar // if no gravity then no speed and be IDLE

10

alw gravityDetected = false ->

next(speed = 0) & next(mode) = IDLE;

gar doSomethingUseful:

alwEv mode != IDLE;

Remarks

● Safety assumptions and guarantees may not include nested next() operators,
i.e., safety constraints may not specify further than one step into the future.

● The next() operator applies to all variables in its scope, e.g., next(x=x) is a
tautology while next(x)=xmeans that x will keep its current value in the next
step. Constants are not affected, e.g., next(x=1) is the same as next(x)=1.

● Guarantees and assumptions can appear in any order in the Spectra document
(their appearance can also be mixed).

● Some analyses use the names of assumptions and guarantees for providing
reports otherwise the names have no significance.

● Names of assumptions and guarantees have to be unique.

Safety Assumptions/Guarantees and State Invariants

Safety guarantees and assumptions are always constraining transitions (even when the
operator next() does not appear in them). However, some safety constraints do not
contain the operator next(). Spectra detects these cases and treats the safety
constraints as state invariants (they hold in the initial state and all next states) instead
of transitions.

Without the automatic detection as state invariants, the meaning of the following safety
guarantee would have been: states where mode=MEASURE and speed!=0 have no valid
successor, i.e., are a deadlock and these states violate the safety guarantee.

gar measureSpeedDeadlock: alw mode=MEASURE -> speed=0;

In some analyses, e.g., Strategy Synthesis, the difference will likely not be observed
because the system will avoid deadlocks. However, in other analyses the non-translated
constraints could lead to confusing results, e.g., for the Well-Separation Check.

11

PastLTL Operators

Spectra supports the use of PastLTL operators that evaluate formulas over the past
interaction of the system and environment. These operators can be used in almost all
places including assumptions and guarantees. PastLTL operators can also be nested.

PastLTL operators receive Boolean formulas as arguments and all PastLTL operators
yield a Boolean evaluation. For Boolean formulas and the PastLTL operatorsψ ϕ
supported by Spectra are:

● PREV (also Y): was true in the previous stateϕ ϕ ϕ
● ONCE (also O): is true now or was true in any past stateϕ ϕ ϕ
● HISTORICALLY (also H): is true now and was true in all past statesϕ ϕ ϕ
● SINCE (also S): is true now, is true now or was true in some pastψ ϕ ψ ϕ ψ ϕ ϕ

state and when became false immediately became true and stayed true upϕ ψ
until now

● TRIGGERED (also T):ψ ϕ ψ ϕ

Example

The following example uses PastLTL operators in an assumption and in a guarantee.

The assumption states that dock requests will only be sent by the environment once the
system signaled that it is ready.

The guarantee expresses that the system will stay ready if a dockRequest has been true
since some time where ready was true.

env boolean dockRequest;

sys boolean ready;

sys boolean docking;

asm alw next(dockRequest) -> ONCE(ready);

// stay ready if seen dockRequest since ready

gar alw (dockRequest SINCE ready) -> next(ready);

12

Remarks

● The PastLTL operator PREV() is very different from the general operator next().
The argument and the evaluation of PREV() are both Boolean while the
evaluation of next() is of the type of its argument. As an example,
PREV(speed)=2 has two type inconsistencies (argument of PREV() is not
Boolean and Boolean evaluation of PREV() cannot be compared to the number 2)
while next(speed)=2 is well-typed.

● PastLTL operators in assumptions cannot be used inside a next() operator (in
guarantees they can).

● Note that the following two guarantees are quite different (not only syntactically
different). A violation of the first is only detected one step later than a violation of
the second:

○ gar alw (PREV(speed=0) -> speed=1);

○ gar alw (speed=0 -> next(speed=1));

Type Aliases

Spectra allows the definition of types (technically type aliases). Defined types can be
used within variable or parameter declarations.

Type aliases start with the keyword type, a name, and the assignment of a type to the
name.

Example

The following example defines three types:
● Floors: with integer values from 0 to 10
● Position: an array of integers from 0 to 7 of length 3
● RoverMode: an enumeration of items

type Floors = Int(0..10);

/** 3-dimensional position coordinates */

type Position = Int(0..7)[3];
type RoverMode = {SEEK, MEASURE, IDLE};

The next example shows how to use the last type alias in the declaration of a variable:

13

sys RoverMode mode; // current system mode

Remarks

● Type alias names must be unique.
● As a convention, type names should start with an uppercase letter.
● Comments preceding a type alias starting with /** will appear in tooltips when

using the alias.

Defines

Defines introduce shortcuts for expressions. They are similar to macros. Expressions
abbreviated by defines can evaluate to any type.

Defines start with the keyword define. The keyword is followed by a name, the operator
:=, and a Spectra expression to be associated with the name. Multiple definitions can
follow a single define keyword.

Example

type Floors = Int(0..10);

env Floors elevatorLocation;

env Floors request;

define

requestedUp := request > elevatorLocation;

requestedDown := request < elevatorLocation;

define

openRequest := request != elevatorLocation;

A convenient way to improve readability and avoid the introduction of additional
variables is the definition of constant arrays. The size of the constants array follows its
name in square brackets [] (in regular arrays the size is declared as part of the type).
The values are written in curly brackets { } and separated by commas.

14

Example

sys Int(0..15)[NUM_OF_ROBOTS] targetLocation;

define

NUM_OF_ROBOTS := 3;

define

basePositions[NUM_OF_ROBOTS] := { 0, 5, 14 };

gar ini targetLocation[0] = basePositions[0];

Remarks

● Be careful when placing the operator next() inside defines and using the defined
name inside the scope of another next(). In this case the application would
happen twice. This is not allowed.

● Defines can reference other elements, e.g., other defines, variables, monitors, or
counters.

Predicate Definitions

Predicates allow for encapsulation and reuse of parameterized, Boolean expressions.
Predicate definitions define the name of a predicate, its typed parameters, and the body
of the predicate. The body of the predicate is a Boolean expression that may reference
elements of the specification and the predicate parameters.

Example

The following example defines the predicate carries with parameter i of type Item. A
reference to the predicate evaluates to true iff the value of the first or the second cell of
the array cargo[0] equals to the value of parameter i.

/**

* item i the farmer carries (as cargo[0] or cargo[1])

* @param i

15

*/

predicate carries(Item i):

(cargo[0]=i | cargo[1]=i);

Predicates can be instantiated by providing concrete values to parameters or by passing
variables as parameters. In the following example the predicate carries is instantiated
three times inside an assumption with different concrete values.

asm notCarryingAnItemKeepsItemPosition:

alw (!carries(Wolf) -> wolfPos=next(wolfPos)) &

(!carries(Cabbage) -> cabbagePos=next(cabbagePos)) &

(!carries(Goat) -> goatPos=next(goatPos));

Remarks

● The body of a predicate can be either enclosed by “:” and “;” or by “{“ and “}”.
● Two major differences between defines and predicates are that

○ defines cannot have parameters and
○ predicates can only evaluate to true or false while defines can evaluate to

any type.
● If predicates should be imported into other specifications the body of the

predicate has to be restricted to parameter values only and not contain
references to variables of the imported Spectra document.

Monitor Definitions

Monitor definitions introduce monitors with a type and a name. The body of a monitor
defines how the value of the monitor is updated in each step. Monitors allow for keeping
track of events over time.

The body of monitors consists of initial constraints and safety constraints. Constraints
can refer to the name of the monitor as a variable. Together, the constraints have to
uniquely determine the value of the monitor.

16

Example

The following listing defines a monitor of type boolean with the name expectFinding.
The body of the monitor defines how the monitor’s value is updated using an initial and
a safety constraint. Initially expectFinding is false. Then, expectFinding becomes
true iff the system mode is SEEK or we expected a finding and nothing is found so far.

/**

* monitor whether system is expecting to find something after SEEK

*/

monitor boolean expectFinding {

!expectFinding;

alw next(expectFinding) = (mode=SEEK | expectFinding & !found);

}

The monitor can be referenced in places where any system variables can be referenced,
e.g., in liveness assumptions:

asm alwEv !expectFinding;

The monitor itself is neither an assumption nor a guarantee. However, the above
assumption states that the environment has the responsibility to influence the monitor’s
value -- here, by setting found=true some steps after seeing mode=SEEK.

Remarks

● Monitors are instantiated directly and only once.
● Monitors can be referenced multiple times, e.g., in assumptions and in

guarantees at the same time.
● The reference to a monitor inside the operator next() cannot appear in an

assumption (imagine monitors to be system variables).
● Make sure the value of the monitor is always uniquely defined! If the value is not

unique then synthesized strategies might fail. If value assignments inside the
monitor body are contradicting synthesis will fail.

17

Counter Definitions

Spectra supports the definition and use of bounded counters. Counters have a name
that can be used as a reference to the value of the counter in arithmetic expressions.
Counter values can be compared to other bounded integers or integer expressions.

Counters have a body with the following fields:

● Initial value assignment to counter
● inc (optional): constraint when to increase the counter
● dec (optional): constraint when to decrease the counter
● reset (optional): constraint when to reset the counter
● overflow (optional): an overflow type, either

○ false (default) - overflow is a violation of the counter,
○ modulo - an overflow restarts counting from lower bound of counter, or
○ keep - an overflow will result in keeping the value of the upper bound of

the counter
● underflow (optional): an underflow type, either

○ false (default) - underflow is a violation of the counter,
○ modulo - an underflow restarts counting from upper bound of counter, or
○ keep - an underflow will result in keeping the value of the lower bound of

the counter

Example

The listing below shows the definition of a counter named blinks with domain 0 to 5.
The counter is initialized to 0. The counter is increased when at a station and blinking.
The counter is reset when not at a station. An overflow of the counter is forbidden.

define blink := next(light)!=light;

counter blinks(0..5) {

// initially no blinks

blinks=0;

// blinking is turning light on when it was off

inc: atStation & blink;

// reset counter when not at station

reset: !atStation;

18

// blink exactly 5 times

overflow: false;

}

The counter blinks is used in the following guarantee:

// if we have blinked less than 5 times at station do blink

gar alw atStation & blinks < 5 -> blink;

Remarks

● Make sure the fields inside the counter definition do not contradict each other,
e.g., ensure that inc does not overlap with dec.

● Counters are internally treated as guarantees. If a counter has contradicting
inc/dec/reset fields, if it overflows with overflow: false, or if it underflows
with underflow: false synthesis sees it as the violation of a guarantee. The
specification can become unrealizable!

Pattern Definitions

Pattern definitions encapsulate reusable units of specifications. Pattern definitions have
a name, a list of parameter names, and a body. The body of a pattern definition can
declare variables (only visible inside the pattern) and constraints over variables and
parameters. Constraints can be initial, safety, or liveness constraints. Parameters are
Boolean.

Patterns can be instantiated as assumptions or guarantees. If a pattern instance is a
guarantee then the system has to ensure satisfaction of all liveness constraints defined
in the pattern. Otherwise, if the pattern is instantiated as an assumption the
environment has to ensure satisfaction of the liveness constraints.

Parameters of pattern instances are Boolean expressions.

Example

The following pattern definition defines a pattern with the name
S_responds_to_P_globally and two parameters s and p. The comment above the
pattern will be shown in tooltips when instantiating the pattern. Comments on patterns
may contain HTML tags as, e.g., supported by JavaDoc.

19

/**

*<p>

* Kind: Response: s responds to p

* Scope: Globally

* LTL: G (!p || F s) (also G(p -> Fs))

* </p>

*/

pattern S_responds_to_P_globally(s, p) {

var { S0, S1} state;

// initial assignments: initial state

ini state=S0;

// safety this and next state

alw ((state=S0 & ((!p) | (p & s)) & next(state=S0)) |

(state=S0 & (p & !s) & next(state=S1)) |

(state=S1 & (s) & next(state=S0)) |

(state=S1 & (!s) & next(state=S1)));

// equivalence of satisfaction

alwEv (state=S0);

}

The following example instantiates the response pattern in the context of a
specification. First, it is instantiated as an assumption, then it is instantiated as a
guarantee. Both instances are independent of each other.

// instantiate response pattern for eventually reaching the

// requested floor

asm S_responds_to_P_globally(elevatorLocation = request,
requestedUp & command = UP);

gar eventuallyHandleOpenRequests:

S_responds_to_P_globally(request=elevatorLocation, openRequest);

Remarks

● The body of patterns can only refer to variables of the pattern or its parameters.
It cannot refer to other names (of variables/patterns/monitors/defines etc.)
defined inside the specification.

20

● We provide a catalog of most of the popular LTL specification patterns of Dwyer
et al. for Spectra.

● Make sure the value of the variables inside the pattern is always uniquely defined!
If the value is not unique then synthesized strategies might fail in some
environments. If value assignments to pattern variables are contradicting the
synthesis will fail.

● Patterns without liveness constraints have no meaning.

Further reading

S. Maoz and J. O. Ringert, GR(1) Synthesis for LTL Specification Patterns. Proc. of
ESEC/FSE 2015, pp.96-106, ACM, 2015.

The paper and materials are available from: https://smlab.cs.tau.ac.il/syntech/patterns/

Weight Definitions

The Spectra language supports the definition of integer weights over states and
transitions of a reactive system specification. Weights can have a name, an integer
value, and a constraint on transitions that the weights apply to.

If not specified, the weight is 0 for all transitions.

Example

The following example defines weights with values -1, 1, -2, and 3 for different
constraints over environment and system variables. Notice that some constraints are
overlapping, e.g., carMain & goMain satisfy the second weight (value 1) and the last
weight (value 3) and thus receive the combined weight value 1 + 3 = 4.

env boolean carMain;

env boolean carSide;

sys boolean goMain;

sys boolean goSide;

weight -1

carMain & !goMain | carSide & !goSide;

weight 1

carMain & goMain | carSide & goSide;

https://smlab.cs.tau.ac.il/syntech/patterns/

21

weight -2

carMain & !goMain;

weight 3

carMain & goMain;

Remarks

● The constraints of weight definitions can be overlapping (see example). Values
associated with satisfied constraints are added up.

● The meaning of weights can be defined in different ways. We show one example
in Section Strategy Synthesis with Weights.

Further reading

G. Amram, S. Maoz, O. Pistiner, and J. O. Ringert, Efficient Algorithms for Omega-Regular
Energy Games. Proc. of FM 2021.

The paper and materials are available from:
https://smlab.cs.tau.ac.il/syntech/energyefficient/

Quantifiers and Variable Indexes

Spectra language supports existential and universal quantification over logical formulas
with the help of two keywords, exists and forall, respectively. The quantification
acts mainly as a convenience tool (“syntactic sugar”) and is translated to a disjunction
or conjunction of several formulas before any further analysis (e.g., synthesis).

Another feature is the usage of integer variables defined in the specification as array
indices. This is also a “syntactic sugar” and is translated to a disjunction of formulas in
a manner that is presented in the example below.

Example

The following example defines a specification with two assertions:

● A safety assumption allColorsRepresented expressing that at any time, each
Color value is represented in the array at some index.

https://smlab.cs.tau.ac.il/syntech/energyefficient/

22

● A liveness guarantee alwaysRedAtIndex expressing that the value of the array
at the index defined by ind variable should be infinitely often red.

type Color = {RED, GREEN, BLUE};

env Color[3] colors;
sys Int(0..2) ind;

asm allColorsRepresented:

alw forall c in Color. exists i in Int(0..2). colors[i] = c;

gar alwaysRedAtIndex:

alwEv colors[ind] = RED;

This specification is internally translated to the following code:

asm allColorsRepresented:

alw (colors[0] = RED | colors[1] = RED | colors[2] = RED) &

(colors[0] = GREEN | colors[1] = GREEN | colors[2] = GREEN) &

(colors[0] = BLUE | colors[1] = BLUE | colors[2] = BLUE);

gar alwaysRedAtIndex:

alwEv (ind = 0 & colors[0] = RED) |

(ind = 1 & colors[0] = RED) |

(ind = 2 & colors[0] = RED);

Remarks

● The quantified variable can be either an integer, a boolean, or an enum variable.
● The scope of the quantified variable is naturally limited to the formula that

follows exists or forall keywords.
● Index arithmetic is supported for ordinary variables, quantified variables, and

defines, as long as they are of type integer.

Triggers and Regular Expressions

A Spectra trigger trig L |=> R intuitively states that whenever a prefix of a computation
satisfies L in the next step R should be satisfied. In triggers L and R are regular
expressions over states. The semantics of triggers in Spectra is non-overlapping, i.e.,

23

when L is satisfied, R is monitored, and only after R is satisfied, L is monitored again for
satisfaction (from the step immediately after R was satisfied).

Regular Expressions

The alphabet of regular expressions in Spectra are states. As usual, these are described
in expressions over variables. Each state expression is enclosed in square brackets [...].
As an example, [carA & !greenA] describes all states where carA is true and greenA
is false.

The operators of regular expressions are:

Operator Symbol Example

concatenation [...][...] [true] [carA & !greenA]

union [...] | [...] [carB] | [carA]

intersection [...] & [...] [carB] & [greenB]

kleene-star (zero-or-more) [...]* [carA & !carB]*

plus (one-or-more) [...]+ [carA & !carB]+

optional (zero-or-one) [...]?
[carA]?

exact repetitions [...]{k} [carA]{4}

at-least-repetitions [...]{k, } [carA]{4, }

ranged-repetitions [...]{k, m} [carA]{1, 4}

negation ~[...] ~[carA]

Parenthesis may be used to group and structure regular expressions.

Triggers

Triggers start with the keyword trig and may appear as assumptions or guarantees.
The left side and right side of triggers are regular expressions separated by the trigger
operator |=>. The Spectra code below shows three example triggers.

sys boolean greenA;

24

sys boolean greenB;

env boolean carA;

env boolean carB;

asm trig [true]* [carA] |=> [true]{0, 3} [carB];

gar trig [true]* [greenA & greenB] |=> [false];

gar trig [true]* [carA & !greenA]{4} |=> [greenA];

The first trigger is an assumption that after seeing a state with carA at most 4 states
later we are in a state with carB. Note that [true]{0, 3} matches any state 0 up to 3
times and that the right side of the trigger only matches after the left has matched.
Thus, the trigger could match [carA] [carB] but not [carA & carB]. The trigger
matches [carA] [carB] [carA] [carB] twice, but matches [carA] [carB & carA]

[carB] only once.

The second trigger is a guarantee that a state with greenA & greenB never occurs.
Here, the right side of the trigger is [false] and it is thus impossible to match it. Note
that this simple case is not presenting a good use of triggers and instead one should
write alw !(greenA & greenB).

Finally, the third trigger expresses that after seeing carA & !greenA for exactly 4
consecutive states the next state must satisfy greenA.

Further reading

Gal Amram, Dor Ma'ayan, Shahar Maoz, Or Pistiner, and Jan O. Ringert, Triggers for
Reactive Synthesis Specifications. Proc. of ICSE 2023.

The paper and materials are available from: https://smlab.cs.tau.ac.il/syntech/triggers

https://smlab.cs.tau.ac.il/syntech/triggers

25

Spectra Tools Analyses
The Spectra Tools implement various analyses of Spectra specifications. These include
the synthesis of controllers that guarantee to satisfy specifications.

Strategy Synthesis

Spectra Tools will try to find an implementation that satisfies the GR(1) specification2

defined by the Spectra document. A GR(1) specification consists of assumptions, which
have to be satisfied by the environment, and guarantees, which have to be satisfied by
the system, i.e., by the implementation we synthesize.

Assumptions and guarantees can be on initial states (start with optional temporal
operator ini), on all consecutive states (start temporal operator alw), or on states to
visit infinitely often (start with temporal operators alwEv). We call these three kinds
initial, safety, and liveness assumptions and guarantees. If synthesis is successful, the
synthesized implementation of the specification ensures:

● If the environment satisfies the initial assumptions then the system satisfies the
initial guarantees,

● as long as the environment satisfies all safety assumptions, the system satisfies
all safety guarantees, and

● as long as the environment satisfies all liveness assumptions, the system
satisfies all liveness guarantees.3

In case synthesis is not successful, it is certain that no implementation with the above
properties can exist for the given Spectra specification! We call these specifications
unrealizable.

3 Technically, this condition is called strict realizability and stronger than implication realizability where the
satisfaction of all assumptions implies the satisfaction of all guarantees. We chose this semantics
because it usually creates implementations that better try to satisfy the guarantees rather than forcing the
environment to violate assumptions. See Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli,
Yaniv Sa'ar: Synthesis of Reactive(1) designs. J. Comput. Syst. Sci. 78(3): 911-938 (2012)

2 For more information on GR(1) see Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli,
Yaniv Sa'ar: Synthesis of Reactive(1) designs. J. Comput. Syst. Sci. 78(3): 911-938 (2012)

26

Concrete Controller

[Right click inside editor or on Spectra file ->
Spectra -> Synthesize Concrete Controller]

A concrete controller synthesized for the specification Rover.spectra is shown below:

state INI[initial], S0, S1;

INI -> S1 {gravityDetected:false, found:false} / {speed:0, mode:IDLE};
INI -> S1 {gravityDetected:false, found:true} / {speed:0, mode:IDLE};
S0 -> S0 {gravityDetected:true, found:false} / {speed:0, mode:MEASURE};
S0 -> S0 {gravityDetected:true, found:true} / {speed:0, mode:MEASURE};
S1 -> S1 {gravityDetected:false, found:false} / {speed:0, mode:IDLE};
S1 -> S1 {gravityDetected:false, found:true} / {speed:0, mode:IDLE};
S1 -> S0 {gravityDetected:true, found:false} / {speed:0, mode:IDLE};
S1 -> S0 {gravityDetected:true, found:true} / {speed:0, mode:IDLE};

The synthesized automaton has three states. Each line denotes a transition consisting
of the source state, the target state, the variable values chosen by the environment, and
the variable values chosen by the system in response.

Controllers have to accept any assignment to environment variables that satisfies the
assumptions in every state. Thus, concrete controllers can become quite large. As an
example, a controller for specification Elevator.spectra has more than 2000 transitions.

Symbolic Controller

[Right click inside editor or on Spectra file ->
Spectra -> Synthesize … Symbolic Controller]

Spectra Tools allows for efficient representation of controllers as a formula of allowed
transitions. These formulas are represented by a special data structure called BDDs.
Spectra Tools store symbolic controllers in a machine readable format in a subfolder
/out/ relative to the specification.

Currently, two variants of symbolic controllers. Both handle controllers with thousands
of states and transitions where concrete controller synthesis would reach its limits. The

27

“Just-in-time” variant is typically faster and more memory efficient than the “Static”
variant as it does not create a monolithic transition relation in one BDD.

Further reading

Shahar Maoz, Ilia Shevrin: Just-In-Time Reactive Synthesis. ASE 2020: 635-646

The paper and materials are available from: https://smlab.cs.tau.ac.il/syntech/jits/

Strategy Synthesis with Weights

Specifications with weight definitions are treated as bounded energy games. The
system starts with an initial energy credit within a bound given by the user. The values
of weights are accumulated in every step. Accumulation that exceeds the bound is
truncated to the bound. The system loses when the accumulated value becomes
negative.

Further reading

S. Maoz, Or Pistiner, and J. O. Ringert, Symbolic BDD and ADD Algorithms for Energy
Games. SYNT 2016: 5th Workshop on Synthesis (with CAV'16).

The paper and materials are available from: https://smlab.cs.tau.ac.il/syntech/energy/

Counterstrategy Synthesis

In case a specification is unrealizable some environment strategy that satisfies all
assumptions can prevent any system from satisfying all guarantees. It might be helpful
to compute and inspect an example of such an environment strategy.

As an example, consider the following unrealizable specification of an elevator:

type Floors = Int(0..3);

sys Floors elevatorLocation;

env Floors request;

gar startOnGroundFloor:

elevatorLocation=0;

https://smlab.cs.tau.ac.il/syntech/jits/
https://smlab.cs.tau.ac.il/syntech/energy/

28

gar moveOneFloorAtATime:

alw (next(elevatorLocation) = elevatorLocation+1) |

(next(elevatorLocation) = elevatorLocation-1);

gar eventuallyHandleOpenRequests:

S_responds_to_P_globally(request = elevatorLocation,

request != elevatorLocation);

Concrete Counterstrategy

[Right click inside editor or on Spectra file ->
Spectra -> Synthesize Concrete Counter Strategy]

A concrete counterstrategy demonstrates behavior of the environment that forces the
system to violate at least one guarantee:

The following is a counterstrategy where in every state the environment chooses a
request and the system can chose a next elevatorLocation. The last guarantee of the
specification to eventually ensure request=elevatorLocation cannot be satisfied:

state INI[initial], S0, S1, S2, S3;

INI -> S3 {request:2} / {elevatorLocation:0};
S3 -> S2 {request:0} / {elevatorLocation:1};
S2 -> S3 {request:1} / {elevatorLocation:0};
S2 -> S0 {request:1} / {elevatorLocation:2};
S1 -> S0 {request:0} / {elevatorLocation:2};
S0 -> S1 {request:0} / {elevatorLocation:3};
S0 -> S2 {request:0} / {elevatorLocation:1};

With this counterstrategy, the environment forces the system to violate the last
guarantee by always setting a request that cannot be handled by the system in one step
(system can only move one floor at a time).

29

Symbolic Counterstrategy (JVTS)

[Right click inside editor or on Spectra file ->
Spectra Add-ons -> GR(1) Counter Strategy Generator ->

Generate Symbolic Counter Strategy]

When concrete counterstrategies get too large it might help to display a high-level
abstraction of counterstrategies consisting of symbolic nodes. The nodes are either

● attractors: the environment forces the system out of
the concrete states contained in these nodes, or

● cycles: the system can stay in a cycle of concrete
states forever but violates at least one liveness
guarantee.

An example JVTS for the unrealizable elevator specification is shown on the right.

Remarks

● Concrete counterstrategies must provide a transition/state for every possible
choice of the system and can thus get very large.

Further reading

A. Kuvent, S. Maoz and J. O. Ringert, A Symbolic Justice Violations Transition System
for Unrealizable GR(1) Specifications. FSE'17, 2017.

The paper and materials are available from: https://smlab.cs.tau.ac.il/syntech/jvts/

Unrealizable Core Computation

[Right click inside editor or on Spectra file ->
Spectra Add-ons -> Cores -> Find an Unrealizable Core]

https://smlab.cs.tau.ac.il/syntech/jvts/

30

When a specification is unrealizable, some subset of the guarantees cannot be satisfied
together. Usually, a minimal unrealizable subset of guarantees is small and studying it4

may help to understand reasons for unrealizability. Due to minimality, removing any
guarantee from a core makes the combination of guarantees remaining in the core
realizable. However, It is not always the case that removing a guarantee from the core
makes the whole specification realizable. Sometimes multiple reasons for
unrealizability exist.

Example

In the above example of the unrealizable elevator specification an unrealizable core
consists of the two last guarantees. Together these make the specification unrealizable
and removing any of them makes the specification realizable. Removing the first allows
the system to immediately jump to the requested floor. Removing the second does not
require the system to move to a requested floor.

type Floors = Int(0..3);

sys Floors elevatorLocation;

env Floors request;

gar startOnGroundFloor:

elevatorLocation=0;

gar moveOneFloorAtATime: _

alw (next(elevatorLocation) = elevatorLocation+1) | _

(next(elevatorLocation) = elevatorLocation-1); _

gar eventuallyHandleOpenRequests: _

S_responds_to_P_globally(request = elevatorLocation, _

request != elevatorLocation); _

Further reading

S. Maoz and R. Shalom, Unrealizable Cores for Reactive Systems Specifications. Proc.
of ICSE 2021.

4 There is not necessarily a unique minimal unrealizable subset, i.e., minimality might be local.

31

The paper and materials are available from:
https://smlab.cs.tau.ac.il/syntech/unrealcores/

Well-Separation Check

[Right click inside editor or on Spectra file ->
Spectra Add-ons -> Well-Separation ->
Diagnose Well-Separation of Environment]

Well-separation is a property of the environment specification, i.e., the assumptions in a
Spectra document. An environment is well-separated iff it cannot be forced to violate its
assumptions from any reachable state. The property of well-separation is desirable.

In case an environment is non-well-separated a possible implementation of a system
can force the environment to violate some assumption. Once the environment violates
an assumption the system implementation does no longer have to satisfy the
guarantees (see conditions described in Strategy Synthesis).

Example of a non-well-separated environment specification

The following example shows a set of safety and liveness assumptions, which
constitute a non-well-separated environment. There are multiple ways how a system
can force the environment to violate at least one of its assumptions.

env boolean atStation;

env boolean cargo;

sys {STOP, FWD, BWD} mot;

sys {LIFT, DROP} lift;

asm findStat: // always possible to find a station

alwEv (atStation);

asm samePos: // same station position when stopped

alw (mot=STOP -> next(atStation)=atStation);

asm liftCargo: // lifting clears sensor

alw (lift=LIFT -> next(!cargo));

asm dropCargo: // dropping senses cargo

alw (lift=DROP -> next(cargo));

asm clearCargo: // backing up clears cargo

https://smlab.cs.tau.ac.il/syntech/unrealcores/

32

alw (mot=BWD -> next(!cargo));

For a specific example see the next section. For more examples and a formal definition,
see the materials under Further reading.

Non-Well-Separated Core Computation

[Right click inside editor or on Spectra file ->
Spectra Add-ons -> Well-Separation ->
Compute Non-Well-Separation Core]

In addition to checking well-separation, Spectra Tools can also compute a minimal
subset of the assumptions that still make an environment specification
non-well-separated.

The following highlighting shows a non-well-separated core. The two first assumptions
make the environment specification non-well-separated. Any system can stop the motor
once it is away from a station. Then the environment has to violate the first assumption
of always eventually finding a station.

asm findStat: // always possible to find a station _

alwEv (atStation); _

asm samePos: // same station position when stopped _

alw (mot=STOP -> next(atStation)=atStation); _

asm liftCargo: // lifting clears sensor

alw (lift=LIFT -> next(!cargo));

asm dropCargo: // dropping senses cargo

alw (lift=DROP -> next(cargo));

asm clearCargo: // backing up clears cargo

alw (mot=BWD -> next(!cargo));

Further reading

S. Maoz and J. O. Ringert, On Well-Separation of GR(1) Specifications. Proc. of
ESEC/FSE 2016, pp.362-372, ACM, 2016.

The paper and materials are available from:
https://smlab.cs.tau.ac.il/syntech/separation

https://smlab.cs.tau.ac.il/syntech/separation

33

Complete Example Specifications

Blink5.spectra

The complete specification is realizable and well-separated.

spec Blink5

env boolean atStation;

sys boolean light;

define blink := next(light)!=light;

counter blinks(0..5) {

// initially no blinks

blinks=0;

// blinking is turning light on when it was off

inc: atStation & blink;

// reset counter when not at station

reset: !atStation;

// blink exactly 5 times

overflow: false;

}

// if we are not blinking do blink

gar alw atStation & blinks < 5 -> blink;

34

Docking.spectra

The complete specification is realizable and well-separated.

import "DwyerPatterns.spectra"

spec Docking

env boolean dockRequest;

sys boolean ready;

sys boolean docking;

asm alw next(dockRequest) -> ONCE(ready);

// stay ready if seen dockRequest since ready

gar alw (dockRequest SINCE ready) -> next(ready);

gar alwEv ready;

gar S_responds_to_P_globally(docking, dockRequest);

35

Elevator.spectra

The complete specification is realizable and well-separated.

import "DwyerPatterns.spectra"

spec Elevator

type Floors = Int(0..10);

env Floors elevatorLocation;

env Floors request;

sys {UP, DOWN} command;

define

requestedUp := request > elevatorLocation;

requestedDown := request < elevatorLocation;

openRequest := request != elevatorLocation;

// maintain requests while not answered

asm alw elevatorLocation != request -> next(request) = request;

// instantiate response pattern for eventually reaching the
// requested floor
asm S_responds_to_P_globally(elevatorLocation = request,

requestedUp & command = UP);

asm S_responds_to_P_globally(elevatorLocation = request,
requestedDown & command = DOWN);

asm moveRightDirection:

alw (command=UP -> next(elevatorLocation) >= elevatorLocation) &

(command=DOWN -> next(elevatorLocation) <= elevatorLocation);

gar eventuallyHandleOpenRequests:
S_responds_to_P_globally(request=elevatorLocation, openRequest);

36

ElevatorUnrealizable.spectra

The complete specification is unrealizable and well-separated.

import "DwyerPatterns.spectra"

spec ElevatorUnrealizable

type Floors = Int(0..3);

sys Floors elevatorLocation;

env Floors request;

gar startOnGroundFloor:

elevatorLocation=0;

gar moveOneFloorAtATime:

alw (next(elevatorLocation) = elevatorLocation+1) |

(next(elevatorLocation) = elevatorLocation-1);

gar eventuallyHandleOpenRequests:

S_responds_to_P_globally(request = elevatorLocation,

request != elevatorLocation);

This assumption is a fix of unrealizability:

asm maintainRequestsIfNotAnswered:

alw elevatorLocation != request -> next(request) = request;

37

NonWellSep.spectra

The complete specification is realizable and non-well-separated.

spec NonWellSep

env boolean atStation;

env boolean cargo;

sys {STOP, FWD, BWD} mot;

sys {LIFT, DROP} lift;

asm findStat: // always possible to find a station

alwEv (atStation);

asm samePos: // same station position when stopped

alw (mot=STOP -> next(atStation)=atStation);

asm liftCargo: // lifting clears sensor

alw (lift=LIFT -> next(!cargo));

asm dropCargo: // dropping senses cargo

alw (lift=DROP -> next(cargo));

asm clearCargo: // backing up clears cargo

alw (mot=BWD -> next(!cargo));

38

Rover.spectra

The complete specification is realizable and well-separated.

spec Rover

env boolean gravityDetected; // whether sensors detect gravity

env boolean found; // whether direction was found after seek

sys Int(0..7) speed; // the speed set by the system

sys {SEEK, MEASURE, IDLE} mode; // current system mode

asm inBeginningNoGravity:

gravityDetected = false;

// once gravity is detected it does not go away

asm

alw gravityDetected -> next(gravityDetected);

asm

eventuallyDetectGravity: alwEv gravityDetected;

gar mode = IDLE; // start in IDLE mode

gar // if no gravity then no speed and be IDLE

alw gravityDetected = false ->

next(speed = 0) & next(mode) = IDLE;

gar alw next(mode)=SEEK -> next(speed) != 0;

gar doSomethingUseful:

alwEv mode != IDLE;

/** monitor whether system is expecting finding after SEEK */

monitor boolean expectFinding {

!expectFinding;

alw next(expectFinding) = (mode=SEEK | expectFinding & !found);

}

asm alwEv !expectFinding;

39

TrafficLight.spectra

The complete specification is realizable and well-separated.

spec TrafficLight

env boolean carMain;

env boolean carSide;

sys boolean goMain;

sys boolean goSide;

asm alwEv carSide;

asm alwEv carMain;

gar alw !(goMain & goSide);

gar alwEv carSide & goSide;

gar alwEv carMain & goMain;

weight -1

carMain & !goMain | carSide & !goSide;

weight 1

carMain & goMain | carSide & goSide;

weight -2

carMain & !goMain;

weight 3

carMain & goMain;

40

DiningPhilosophers.spectra

The complete specification is realizable and well-separated.

import "DwyerPatterns.spectra"

spec DiningPhilosophers

type State={FREE, LEFT, RIGHT};

sys State[5] chopsticks;
env boolean[5] eatRequest;

// Initially there are no requests

asm initialNoRequests:
forall i in Int(0..4). !eatRequest[i];

// Initially the chopsticks are not taken from either side

gar initialChopsticksFree:
forall i in Int(0..4). chopsticks[i]=FREE;

// Eating philosopher stops requesting for chopsticks

asm eatingDoesntRequest:
alw forall i in Int(0..4). (chopsticks[i]=RIGHT &

chopsticks[(i+1)%5]=LEFT) -> next(!eatRequest[i]);

// Keep requesting if one of the chopsticks is taken by neighbor

asm keepRequesting:
alw forall i in Int(0..4). (eatRequest[i] & (chopsticks[i]=LEFT |

chopsticks[(i+1)%5]=RIGHT)) -> next(eatRequest[i]);

// Right philosopher gets left chopstick once freed

gar getLeftChopstick:
alw forall i in Int(0..4). (eatRequest[i] & chopsticks[i]=FREE)

-> next(chopsticks[i]=RIGHT);

// Left philosopher gets right chopstick once freed

gar getRightChopstick:
alw forall i in Int(0..4). (eatRequest[i] &

chopsticks[(i+1)%5]=FREE) -> next(chopsticks[(i+1)%5]=LEFT);

// Each philosopher must eat infinitely often

gar S_responds_to_P_globally(chopsticks[0]=RIGHT &
chopsticks[1]=LEFT, eatRequest[0]);

41

gar S_responds_to_P_globally(chopsticks[1]=RIGHT &
chopsticks[2]=LEFT, eatRequest[1]);

gar S_responds_to_P_globally(chopsticks[2]=RIGHT &
chopsticks[3]=LEFT, eatRequest[2]);

gar S_responds_to_P_globally(chopsticks[3]=RIGHT &
chopsticks[4]=LEFT, eatRequest[3]);

gar S_responds_to_P_globally(chopsticks[4]=RIGHT &
chopsticks[0]=LEFT, eatRequest[4]);

