
Spectra Example: Towers of Hanoi

Shahar Maoz

Tel Aviv University

Abstract. The Towers of Hanoi is a classic mathematical puzzle. This
report presents a specification and simulation for the puzzle in Spec-
tra [3]. In addition to assumptions and guarantees, it specifically demon-
strates the use of Spectra defines and arrays with quantification.

1 Introduction

The Towers of Hanoi is a classic mathematical puzzle. It consists of three rods
and a number of disks of different sizes, which can slide onto any rod. The puzzle
starts with the disks in a neat stack in ascending order of size on one rod, the
smallest at the top, thus making a conical shape. The objective of the puzzle
is to move the entire stack to another rod, obeying the following simple rules:
(1) only one disk can be moved at a time; (2) each move consists of taking the
upper disk from one of the stacks and placing it on top of another stack or on
an empty rod, and (3) no larger disk may be placed on top of a smaller disk.
With 3 disks, the puzzle can be solved in 7 moves. The minimal number of moves
required to solve a Towers of Hanoi puzzle is 2n − 1, where n is the number of
disks. A comprehensive discussion about the puzzle appears in [1].

We present a Spectra [3] specification for the puzzle and a simulation of its
solution. The specification demonstrates the use of Spectra defines and arrays
with quantification. All related files are available from http://smlab.cs.
tau.ac.il/syntech/.

2 The Specification

2.1 Defines and variable declarations

The environment describes and controlls the state of the “world”, specifically
which disk is on which tower. We model that using the array diskPosition
declared in line 10 of Listing 1.1.

The system controls the actions that should be taken at each step in order
to solve the puzzle, specifically which disk should be moved and to which tower.
We model it using two variables, moveDiskNumber and moveDiskToTower,
declared in lines 13-14 of Listing 1.1.

Note that the use of defines for number of disks and number of towers makes
the specification more readable and easier to change.

Copyright held by the authors, 2020.

http://smlab.cs.tau.ac.il/syntech/
http://smlab.cs.tau.ac.il/syntech/


2 Shahar Maoz

1 spec TowersOfHanoi
2

3 define NUMBEROFDISKS := 5;
4 define NUMBEROFDISKSMINUSONE := NUMBEROFDISKS-1;
5 define NUMBEROFDISKSMINUSTWO := NUMBEROFDISKS-2;
6

7 define NUMBEROFTOWERSMINUSONE := 2;
8

9 // position of the disks
10 env Int(0..NUMBEROFTOWERSMINUSONE)[NUMBEROFDISKS]

diskPosition;
11

12 // current disk to move
13 sys Int(0..NUMBEROFDISKSMINUSONE) moveDiskNumber;
14 sys Int(0..NUMBEROFTOWERSMINUSONE) moveDiskToTower;

Listing 1.1. Spectra specification of the Towers of Hanoi puzzle: defines and variable
declarations

1 asm startLeft:
2 forall i in Int(0..NUMBEROFDISKSMINUSONE) .
3 diskPosition[i] = 0;
4

5 asm carryingADiskChangesItsPosition:
6 G forall i in Int(0..NUMBEROFDISKSMINUSONE) .
7 forall j in Int(0..NUMBEROFTOWERSMINUSONE) .
8 (moveDiskNumber=i & moveDiskToTower=j) ->
9 (next(diskPosition[i]) = j);

10

11 asm notCarryingADiskKeepsDiskPosition:
12 G forall i in Int(0..NUMBEROFDISKSMINUSONE) .
13 (!(moveDiskNumber=i))->
14 (diskPosition[i]=next(diskPosition[i]));

Listing 1.2. Spectra specification of the Towers of Hanoi puzzle: assumptions

2.2 Assumptions and guarantees

Listing 1.2 presents the three assumptions that describe the expected behavior of
the “world”. First, initially, all disks are on the leftmost tower. Second, carrying
a disk will indeed change its position. Finally, if a disk is not carried, it will not
change its position.

Listing 1.3 presents the guarantees that the system must satisfy. First, the
system must never put a larger disk on top of a smaller one. Second, when two
disks are on the same tower, the larger disk cannot be moved. Third, all disks
must eventually reach the rightmost tower. Finally, once all disks are at the
rightmost tower, no disk should move anymore.



Spectra Example: Towers of Hanoi 3

1 gar cantPutALargerDiskOnTopOfSmallerDisk:
2 G forall i in Int(1..NUMBEROFDISKSMINUSONE) .
3 forall j in Int(0..NUMBEROFDISKSMINUSTWO) .
4 forall k in Int(0..NUMBEROFTOWERSMINUSONE) .
5 (j<i & moveDiskNumber=i & diskPosition[j]=k) ->
6 moveDiskToTower != k;
7

8 gar mustMoveSmallestDiskFirst:
9 G forall i in Int(0..NUMBEROFDISKSMINUSONE) .

10 forall j in Int(1..NUMBEROFDISKSMINUSONE) .
11 (j>i & diskPosition[i]=diskPosition[j]) ->
12 moveDiskNumber!=j;
13

14 gar allDisksMustReachRighmostTower:
15 GF forall i in Int(0..NUMBEROFDISKSMINUSONE) .
16 diskPosition[i]=NUMBEROFTOWERSMINUSONE;
17

18 gar onceSolvedNoDiskMoves:
19 G (forall i in Int(0..NUMBEROFDISKSMINUSONE) .
20 diskPosition[i]=NUMBEROFTOWERSMINUSONE) ->
21 (forall i in Int(0..NUMBEROFDISKSMINUSONE) .
22 diskPosition[i]=next(diskPosition[i]));

Listing 1.3. Spectra specification of the Towers of Hanoi puzzle: guarantees

Note that the last guarantee implicitly turns the specification’s semantics
into one that considers finite computation paths. In general, Spectra is defined
over infinite computations. We have added the last guarantee in order to align
the specification with the basic Towers of Hanoi puzzle, which considers finite
solutions.

3 Some Example Analyses

In addition to synthesizing a controller, one may apply different analyses to
study the specification.

As a first example, one may be interested in checking whether all assump-
tions are indeed required for realizability. To check this use Cores / Find an
Assumptions Core on the Spectra Add-ons menu. The computed core includes
two assumptions, the second and third assumptions, but not the first. This shows
that the first assumption, about the initial state, is not necessary for realizability.
Moreover, it shows that the second and third assumptions are both sufficient and
necessary for realizability. Indeed, one can comment out one of the assumptions
in the core and check that the specification becomes unrealizable.

As another example, one can check whether the specification is well-
separated [2], i.e., intuitively, whether the system may be able to force the
environment into violating the assumptions. Specifications that are not well-
separated are considered problematic. To check this use Well-Separation / Diag-



4 Shahar Maoz

nose Well-Separation of Environment. The output on the console will show that
the specification is well-separated.

Acknowledgements

The authors thank Yarden Meshulam for the implementation of the simulation.
This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 638049, SYNTECH).

References

1. Hinz, A.M., Klavzar, S., Milutinovic, U., Petr, C.: The Tower of Hanoi - Myths
and Maths. Birkhäuser (2013). https://doi.org/10.1007/978-3-0348-0237-6, https:
//doi.org/10.1007/978-3-0348-0237-6

2. Maoz, S., Ringert, J.O.: On well-separation of GR(1) specifications. In: Zimmer-
mann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016. pp. 362–372. ACM (2016), http:
//doi.acm.org/10.1145/2950290.2950300

3. Maoz, S., Ringert, J.O.: Spectra: A specification language for reactive systems.
CoRR abs/1904.06668 (2019), http://arxiv.org/abs/1904.06668

https://doi.org/10.1007/978-3-0348-0237-6
https://doi.org/10.1007/978-3-0348-0237-6
https://doi.org/10.1007/978-3-0348-0237-6
http://doi.acm.org/10.1145/2950290.2950300
http://doi.acm.org/10.1145/2950290.2950300
http://arxiv.org/abs/1904.06668

	Spectra Example: Towers of Hanoi
	Introduction
	The Specification
	Defines and variable declarations
	Assumptions and guarantees

	Some Example Analyses


