
Spectra Example:
Moving Obstacle Evasion Problem

Matan Yossef

Tel Aviv University

Abstract. The moving obstacle evasion problem is a two player game
in which a robot is trying to avoid an obstacle over a bidimensional
grid. We chose to model the solution as a safety game where the robot
represents the system player. This report presents a formal specification
of the problem in the Spectra language. In addition to assumptions and
guarantees, the specification demonstrates the use of Spectra defines,
predicates, and counters.

1 Introduction

The moving obstacle evasion problem is a two player game in which a robot
is trying to avoid an obstacle over a bidimensional grid 1. The context game
consists of a bidimensional grid of size m × m, a robot of size 1 × 1, initially
placed in the upper left corner of the grid, and an obstacle of size 2× 2, initially
placed in the lower right corner of the grid. In the basic setting, the robot and
the obstacle can move by at most one cell in the x dimension and by at most
one cell in the y dimension. To give the robot some leeway, the robot can move
two steps for every one step of the obstacle. As the obstacle tries to catch the
robot, the robot plays a safety game of avoiding the obstacle.

The problem is to compute a behavior (formally, a strategy) for the robot
such that the obstacle will never be able to catch it.

We present a Spectra [2] specification for the problem and a simulation of its
solution. All related files are available from http://smlab.cs.tau.ac.il/
syntech/.

2 The Basic Specification

We model the problem as a parametric specification that depends on the size of
the grid represented by DIM SIZE.

1 A previous formulation of the problem appears in the git repository of the Slugs
synthesizer https://github.com/VerifiableRobotics/slugs

Copyright held by the authors, 2020.

http://smlab.cs.tau.ac.il/syntech/
http://smlab.cs.tau.ac.il/syntech/
https://github.com/VerifiableRobotics/slugs

2 Matan Yossef

1 spec MovingObstacle
2

3 define DIM_SIZE := 6;
4

5 env Int(1..(DIM_SIZE-1))[2] obstacle;
6 env boolean obsWait;
7 env boolean isObstacleTurn;
8 define isRobotTurn := !isObstacleTurn;
9

10 sys Int(1..DIM_SIZE)[2] robot;

Listing 1.1. Spectra specification of the moving obstacle evasion problem: defines and
variables

1 asm initiallyObstacleAtLowerRightCorner:
2 (obstacle[0] = DIM_SIZE - 1) & (obstacle[1] = DIM_SIZE - 1);
3

4 gar initiallyRobotAtUpperLeftCorner:
5 robot[0] = 1 & robot[1] = 1;

Listing 1.2. Spectra specification of the moving obstacle evasion problem: initial state
assumptions and guarantees

The obstacle location, which is represented by the obstacle variable, is
controlled by the environment. The robot location, which is represented by the
robot variable, is controlled by the system. The robot tries to evade the ob-
stacle. The locations are represented by an array of two indices, one for each
dimension of the grid. The obstacle is of size 2×2 and its location is determined
by the location of its upper left corner (therefore its indices range between 1 and
DIM SIZE - 1).

At each step, it is either the robot’s turn to move or the obstacle’s turn to
move. After each step of the obstacle, the robot performs two consecutive steps
The turn is specified by the environment controlled Boolean variable isOb-
stacleTurn. The variable is followed by a define made for convenience, which
indicates if it’s the robot’s turn. The environment variable obsWait determines
whether the obstacle moves during the next step or has to wait for another step.
List. 1.1 shows the variables and defines in the specification.

Initially, the robot is at location 〈1, 1〉 and the obstacle is at location
〈DIM SIZE− 1,DIM SIZE− 1〉. See the assumption and guarantee in List. 1.2.

The obstacle is the first to play. After each obstacle turn, the obstacle has to
wait two turns before it plays again. See List. 1.3.

We now have to define constraints on the movement of the robot and the ob-
stacle. We assume the obstacle moves only when it is its turn. We also constrain
the obstacle to move by at most one cell in each dimension in each turn. Sim-
ilar guarantees are defined for the movement of the robot. Notice the usage of

Spectra Example: Moving Obstacle Evasion Problem 3

1 asm initiallyObsWaitTrue:
2 obsWait;
3

4 asm initiallyObstacleTurn:
5 isObstacleTurn;
6

7 asm turnSwitches:
8 G ((isObstacleTurn | obsWait)->next(isRobotTurn)) &
9 ((isRobotTurn & !obsWait)->next(isObstacleTurn));

10

11 asm obswaitSwitches:
12 G (isRobotTurn->(next(obsWait) = !obsWait)) &
13 (isObstacleTurn->(next(obsWait) = obsWait));

Listing 1.3. Spectra specification of the moving obstacle evasion problem: turn state
assumptions

predicates, which define movement on one dimension, to make the specification
clearer. See List. 1.4.

Finally and most importantly, the system, which is represented by the robot,
guarantees that the robot will never collide with the obstacle, i.e., will not be
located in any of the four cells that the obstacle covers. See List. 1.5.

3 Allowing Glitches in Obstacle Movements

To spice the problem up a little bit, we allow glitches in the obstacle movements.
Specifically, for a finite number of times, defined by NUM OF GLITCHES, the
obstacle can violate the basic setup and move after one step of the robot rather
than only after two steps (as in the basic problem).

To formalize, we define two environment variables that will specify the
glitches behavior: a Spectra counter glitches, which counts the number of
glitches, and a Boolean variable isGlitch, which specifies whether the obsta-
cle is currently using a glitch, i.e., whether the obstacle will play immediately
after one turn of the robot. We assume that the glitches counter counts from
0 to NUM OF GLITCHES, and increases by 1 following each glitch. See List. 1.6.

The obstacle can only use the glitch during its turn. We assume that there is
no glitch during the first step, in order to avoid an initial deadlock. See List. 1.7.

Finally, the glitch effect takes place in the switching of obsWait. When the
obstacle uses a glitch, obsWait switches to false immediately rather than after

4 Matan Yossef

1 asm obstacleDoesNotMoveAtRobotTurn:
2 G isRobotTurn ->
3 (next(obstacle[0]) = obstacle[0] &
4 next(obstacle[1]) = obstacle[1]);
5

6 gar robotDoesNotMoveAtObstacleTurn:
7 G isObstacleTurn ->
8 (next(robot[0]) = robot[0] &
9 next(robot[1]) = robot[1]);

10

11 predicate moveRobot(Int(1..DIM_SIZE) pos):
12 pos+1 = next(pos) | pos = next(pos) | pos-1 = next(pos);
13

14 predicate moveObstacle(Int(1..(DIM_SIZE-1)) pos):
15 pos+1 = next(pos) | pos = next(pos) | pos-1 = next(pos);
16

17 asm obstacleMovesAtMostOne:
18 G moveObstacle(obstacle[0]) & moveObstacle(obstacle[1]);
19

20 gar robotMovesAtMostOne:
21 G moveRobot(robot[0]) & moveRobot(robot[1]);

Listing 1.4. Spectra specification of the moving obstacle evasion problem: defining
the movement of the players

1 gar robotAvoidsObstacle:
2 G (robot[0] != obstacle[0] | robot[1] != obstacle[1]) &
3 (robot[0] != obstacle[0] + 1 | robot[1] != obstacle[1]) &
4 (robot[0] != obstacle[0] | robot[1] != obstacle[1] + 1) &
5 (robot[0] != obstacle[0] + 1 | robot[1] != obstacle[1] + 1);

Listing 1.5. Spectra specification of the moving obstacle evasion problem: robot
evasion gurantee

one turn of the robot. This shortens the obstacle’s waiting from two steps to
one. See List. 1.8.

4 Using the Specification

In the basic setup, realizabilty is rather simple. The specification is realizable,
i.e., the robot can successfully avoid the obstacle, for every grid of size 6× 6 or
more.

Allowing glitches makes the problem more complicated. Table 1 shows some
realizability checking results. For any fixed dimension size, when the number
of glitches grows, at some point the specification turns from realizable to un-
realizable. We report the results around these turning points. We executed the
experiments on an ASUS laptop with 4GB RAM and Intel Core i5−7200U CPU
with a Spectra version dated 23.10.2019, using all heuristics described in [1].

Spectra Example: Moving Obstacle Evasion Problem 5

1 define NUM_OF_GLITCHES := 13;
2

3 env boolean isGlitch;
4 define noGlitch := !isGlitch;
5

6 counter glitches(0..NUM_OF_GLITCHES) {
7 glitches = 0;
8 inc: isGlitch;
9 overflow: false;

10 }

Listing 1.6. Spectra specification of the moving obstacle evasion problem: glitches’
defines and variables

1 asm initiallyNoGlitch:
2 noGlitch;
3

4 asm maxGlitches:
5 G next(glitches = NUM_OF_GLITCHES -> noGlitch);
6

7 asm glitchOnlyWhenObstacleTurn:
8 G next(isRobotTurn->noGlitch);

Listing 1.7. Spectra specification of the moving obstacle evasion problem: glitches’
assumptions

4.1 Simulating the Problem

We created an animation using Java Swing to simulate the synthesized controller.
The simulation randomizes the movement of the obstacle by choosing at random
one of the possible next states in the specification’s symbolic controller. These
are guaranteed to not violate the assumptions.

Interestingly, the original specification makes the animated obstacle choose
irrational moves from time to time (e.g., moves that are not towards the robot).
To make the simulation more intuitive, we added an assumption that forces the
obstacle to always move towards the robot. See List. 1.9.

One may consider whether such an assumption should appear in the specifi-
cation of the problem. An important principle is that assumptions or guarantees
should be included in a specification only if they are necessary to describe the
problem. Specifically, typically, one should not add assumptions or guarantees
that describe the solution (i.e., force a specific strategy for the system or the
environment). Therefore, an assumption as we showed above can be used for the
purpose of simulation, but in general should not be part of the specification.

6 Matan Yossef

1 asm obswaitSwitches:
2 G ((isRobotTurn | isGlitch)->(next(obsWait) = !obsWait)) &
3 ((isObstacleTurn & noGlitch)->(next(obsWait) = obsWait));

Listing 1.8. Spectra specification of the moving obstacle evasion problem: glitches’
effect on turn switching

Table 1. Some realizability checking results

Dim. size #glitches Realizable? Computation time

8 1 Y 77ms
8 2 N 154ms

16 5 Y 0.88s
16 6 N 1.04s

24 9 Y 12.5s
24 10 N 5.0s

32 13 Y 16s
32 14 N 17s

48 21 Y 53s
48 22 N 57s

64 29 Y 3m52s
64 30 N 4m56s

4.2 Additional Analyses

One may want to check whether all assumptions about the obstacle’s behav-
ior are necessary for realizability. In order to check that, the engineer can ask
Spectra to compute an assumptions core by choosing Spectra Add-ons / Cores
/ Find an Assumptions Core. This will find a locally minimal subset of as-
sumptions that are sufficient and necessary for realizability. For example, the
analysis shows an assumptions core that contains the assumption initial-
lyObstacleAtLowerRightCorner (see List. 1.2). Indeed, if this assumption
is commented out, the specification becomes unrealizable, as the environment
may choose to initially locate the obstacle such that it touches the robot. This
can also be demonstrated by Spectra as follows: we can comment out this as-
sumption, check that the specification is now unrealizable, compute a concrete
counter-strategy (Spectra / Synthesize Concrete Counter-Strategy), and observe
the deadlock already at the initial state, as expected.

Acknowledgements

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 638049, SYNTECH).

Spectra Example: Moving Obstacle Evasion Problem 7

1 asm obstacleIsSmart:
2 G isObstacleTurn ->
3 ((obstacle[0] > robot[0] ->
4 next(obstacle[0]) = obstacle[0] - 1) &
5 (obstacle[0] < robot[0] - 1 ->
6 next(obstacle[0]) = obstacle[0] + 1) &
7 (obstacle[1] > robot[1] ->
8 next(obstacle[1]) = obstacle[1] - 1) &
9 (obstacle[1] < robot[1] - 1 ->

10 next(obstacle[1]) = obstacle[1] + 1));

Listing 1.9. Spectra specification of the moving obstacle evasion problem: obstacle
always moves towards the robot

References

1. Firman, E., Maoz, S., Ringert, J.O.: Performance heuristics for GR(1) synthesis and
related algorithms. Acta Inf. 57(1-2), 37–79 (2020). https://doi.org/10.1007/s00236-
019-00351-9, https://doi.org/10.1007/s00236-019-00351-9

2. Maoz, S., Ringert, J.O.: Spectra: A specification language for reactive systems.
CoRR abs/1904.06668 (2019), http://arxiv.org/abs/1904.06668

https://doi.org/10.1007/s00236-019-00351-9
https://doi.org/10.1007/s00236-019-00351-9
https://doi.org/10.1007/s00236-019-00351-9
http://arxiv.org/abs/1904.06668

8 Matan Yossef

A Complete Specification

1 spec MovingObstacle
2

3 define DIM_SIZE := 64;
4 define NUM_OF_GLITCHES := 30;
5

6 env Int(1..(DIM_SIZE-1))[2] obstacle;
7 env boolean obsWait;
8

9 env boolean isGlitch;
10 define noGlitch := !isGlitch;
11

12 counter glitches(0..NUM_OF_GLITCHES) {
13 glitches = 0;
14 inc: isGlitch;
15 overflow: false;
16 }
17

18 env boolean isObstacleTurn;
19 define isRobotTurn := !isObstacleTurn;
20

21 sys Int(1..DIM_SIZE)[2] robot;
22

23 asm initiallyObstacleAtLowerRightCorner:
24 (obstacle[0] = DIM_SIZE - 1) & (obstacle[1] = DIM_SIZE - 1);
25

26 asm initiallyObsWaitTrue:
27 obsWait;
28

29 asm initiallyObstacleTurn:
30 isObstacleTurn;
31

32 gar initiallyRobotAtZero:
33 robot[0] = 1 & robot[1] = 1;
34

35 asm initiallyNoGlitch:
36 noGlitch;
37

38 asm maxGlitches:
39 G next(glitches = NUM_OF_GLITCHES -> noGlitch);

Spectra Example: Moving Obstacle Evasion Problem 9

45 asm glitchOnlyWhenObstacleTurn:
46 G next(isRobotTurn->noGlitch);
47

48 asm turnSwitches:
49 G ((isObstacleTurn | obsWait)->next(isRobotTurn)) &
50 ((isRobotTurn & !obsWait)->next(isObstacleTurn));
51

52 asm obswaitSwitches:
53 G ((isRobotTurn | isGlitch)->(next(obsWait) = !obsWait)) &
54 ((isObstacleTurn & noGlitch)->(next(obsWait) = obsWait));
55

56 asm obstacleDoesNotMoveAtRobotTurn:
57 G isRobotTurn ->
58 (next(obstacle[0]) = obstacle[0] &
59 next(obstacle[1]) = obstacle[1]);
60

61 gar robotDoesNotMoveAtObstacleTurn:
62 G isObstacleTurn ->
63 (next(robot[0]) = robot[0] &
64 next(robot[1]) = robot[1]);
65

66 predicate moveRobot(Int(1..DIM_SIZE) pos):
67 pos+1 = next(pos) |
68 pos = next(pos) |
69 pos-1 = next(pos);
70

71 predicate moveObstacle(Int(1..(DIM_SIZE-1)) pos):
72 pos+1 = next(pos) |
73 pos = next(pos) |
74 pos-1 = next(pos);
75

76 asm obstacleMovesAtMostOne:
77 G moveObstacle(obstacle[0]) & moveObstacle(obstacle[1]);
78

79 gar robotMovesAtMostOne:
80 G moveRobot(robot[0]) & moveRobot(robot[1]);
81

82 gar robotAvoidsObstacle:
83 G (robot[0] != obstacle[0] | robot[1] != obstacle[1]) &
84 (robot[0] != obstacle[0] + 1 | robot[1] != obstacle[1]) &
85 (robot[0] != obstacle[0] | robot[1] != obstacle[1] + 1) &
86 (robot[0] != obstacle[0] + 1 | robot[1] != obstacle[1] + 1);

Listing 1.10. Complete Spectra specification of the moving obstacle evasion problem

	Spectra Example:Moving Obstacle Evasion Problem

