Spectra Example: Dining Philosophers

Ilia Shevrin

Tel Aviv University

Abstract. The Dining Philosophers is a well-known problem in concur-
rent design, used to illustrate the difficulties in developing concurrent
algorithms [I]. This report presents a formal specification of the problem
in the Spectra language [4]. We chose to model the solution as a system
controlled arbitrator that must grant forks to the environment controlled
hungry philosophers.

1 Introduction

The Dining Philosophers is a well-known problem in the field of concurrent algo-
rithms design, originally formulated by Edsger Dijkstra [I]. The basic statement
consists of a round table with n bowls of spaghetti. n forks are placed between
each pair of bowls and every philosopher is seated beside one bowl. To eat, a
philosopher must use both forks, but she may take them only if they are not
being used by a neighboring philosopher. The philosophers are silent, i.e., no
philosopher can announce to the table when does she intend to start or stop
eating.

The problem is to describe a behavior for the philosophers such that no
philosopher will starve, i.e., each will eat infinitely often, assuming an unlimited
supply of spaghetti.

We present a Spectra [4] specification for the problem and a simulation of its
solution. All related files are available from http://smlab.cs.tau.ac.il/
syntech/.

2 The Specification

We model the solution as an arbitrator that takes requests from the philosophers
and serves them both forks at once. When a philosopher finishes eating, she
simply puts down the forks. The essence of the solution is the guarantee that
no philosopher is going to starve, i.e., whenever a philosopher is hungry, she is
eventually served.

We define a state enum for a fork (line 1 in List. 1.1). It consists of three
states: FREE, which means that the fork is on the table, and RIGHT (LEFT),
which means that the fork is taken by a philosopher sitting to its right (left).
We set N to 5 (line 2), in order to conform with the number of philosophers in
the original problem, but the specification is parametric and can be easily fixed
to support any number of philosophers.

Copyright held by the authors, 2020.

http://smlab.cs.tau.ac.il/syntech/
http://smlab.cs.tau.ac.il/syntech/

2 Ilia Shevrin

1|type State = {FREE, LEFT, RIGHT};
2|define N := 5;

3| env boolean[N] hungry;

4| sys State[N] forks;

5| predicate hasTwoForks (Int (0.. (N-1)
6

) 1)
forks[i%N] = RIGHT & forks[(i+1)%N]

= LEFT;

Listing 1.1. Spectra specification of the Dining Philosophers: defines and variable
declarations

1|asm keepBeingHungry: G forall i in Int(0..(N-1))
2 (hungry[i] & 'hasTwoForks(i)) —-> next (hungryl[i]);

Listing 1.2. Spectra specification of the Dining Philosophers: safety assumptions

The environment in our example controls the philosophers. It maintains an
array of size N that keeps track which philosopher is hungry at the moment. This
constitutes as asking permission from the arbitrator to eat. We model it using
the variable hungry (line 3).

The system controls the arbitrator. Its job is to grant every hungry philoso-
pher permission to eventually pick up both her right and left forks, once they
become available, so that she will eat and fulfill her request. We model it using
the variable forks (line 4).

We define a useful predicate to indicate when a philosopher holds both forks,
so she may eat and fulfill her request in hasTwoForks (lines 5-6).

2.1 Assumptions

Every single philosopher, acting as a requesting agent, is assumed to keep ask-
ing permission for the forks as long as her hunger is not fulfilled, i.e., she does
not withdraw her request (keepBeingHungry in listing 1.2). We also assume
that a philosopher who holds both forks, will eventually stop being hungry
(stopsEating in List. 1.3). This is modeled with the LTL formula G(s — Fp).
As this formula is not in pure GR(1), its expression in Spectra is achieved via
language constructs called patterns [2] (the pattern pRespondsToS in our ex-
ample). Note the import statement at the beginning of the specification.

Observe that the liveness assumption stopsEating is parametric in the
number of philosophers, and is in fact unrolled into N assumptions. This is an
example of a Spectra’s language construct that frees the writer of the specifi-
cation from repeating a very similar formula N times and of having to edit it
whenever N is changed.

2.2 Guarantees

The system, acting as a granting agent, should most importantly guarantee
absence of starvation. It maintains liveness on account of each philosopher with

Spectra Example: Dining Philosophers 3

[

asm stopsEating{Int (0..(N-1)) 1i}:
pRespondsToS (hasTwoForks (i), 'hungry[i]);

N

Listing 1.3. Spectra specification of the Dining Philosophers: liveness assumptions

-

gar eventuallyEats{Int(0..(N-1)) 1i}:
pRespondsToS (hungry[i], hasTwoForks(i));

N

Listing 1.4. Spectra specification of the Dining Philosophers: liveness guarantees

another instance of the response pattern G(s — F'p). Every hungry philosopher
eventually gets a right and a left fork and can start eating, or in other words,
no philosopher will be hungry forever (eventuallyEats in List. 1.5). Again,
this is a parametric liveness guarantee.

Further, the system should not take away the forks from a hungry philoso-
pher, as long as she is hungry (alwaysKeepForksWhileEating in line
1 in List. 1.4). It also guarantees to serve both forks at once or none at
all (alwaysGiveLeftAndRightTogether in line 4). Moreover, we require
that a fork switches hands only by being free on the table in a middle step
(mustPutDownFork in line 8).

Finally, we require that the arbitrator will never give forks
to non-hungry philosophers, i.e., it will give no redundant grants
(dontGiveForkIfNoHungry in line 12).

3 Example Analyses

3.1 Realizability and Unrealizability Analysis

In addition to synthesizing a controller, one may apply different analyses to study
the specification and explore the solution. The basic analysis one may apply is to
check whether the specification is realizable. To check this use Spectra / Check
Realizability. Our specification is indeed realizable.

Assume now that assumption stopsEating is missing, which, as one can
check, renders the specification unrealizable. To better understand the reason
for the unrealizability we use Spectra / Synthesize Concrete Counter-Strategy.
Studying the state machine description Spectra outputs, we learn that the envi-
ronment may keep philosopher ¢ infinitely hungry, as long as the system serves
her forks, and at the same time request spaghetti for philosopher ¢ — 1. Ob-
serve that in order to satisfy eventually eventuallyEats, the system must
inevitably violate alwaysKeepForksWhileEating.

One might also be intersted in a minimal set of guarantees that account for
specification unrealizability, i.e., an unrealizable core. This can be achieved via
Spectra Add-ons / Cores / Find an Unrealizable Core. Unsurprisingly, the output
is a core consisting of only two guarantees, alwaysKeepForksWhileEating
and eventuallyEats.

4 Ilia Shevrin

1|gar alwaysKeepForksWhileEating: G forall i in Int (0..(N-1))
2 (hasTwoForks (i) & hungry[i]) -> (next (hasTwoForks(i)));

3

s|gar alwaysGiveLeftAndRightTogether:

5 G forall i in Int (0.. (N-1))

6 (forks[i] = RIGHT <-> forks[(i+1)%N] = LEFT);

7

s| gar mustPutDownFork: G forall i in Int (0..(N-1))

9 (forks[i] = LEFT -> next (forks[i]) != RIGHT) &

10 (forks[i1i] = RIGHT -> next (forks[i]) != LEFT);

12| gar dontGiveForkIfNoHungry: G forall i in Int (0..(N-1))
13 ('hungry[i] —>
14 (next (forks[i] != RIGHT) & next (forks[(i+1)%N] != LEFT)));

Listing 1.5. Spectra specification of the Dining Philosophers: safety guarantees

3.2 Vacuity Analysis

It is possible that the specification contains vacuous assumptions or guarantees,
i.e., formulas that are logically implied from other formulas in the specifica-
tion [5]. Some vacuities may be more difficult to spot than others. To check for
system (resp. environment) vacuities use Spectra Add-ons / GR(1) Vacuity /
Find System (resp. Environment) Module Vacuities. We discover that there are
no vacuities in our specification.

Assume now that our specification contains two additional guarantees. First,
one may define a mutual exclusion guarantee preventing any two adjacent
philosophers from eating at the same time (adjacentNeverEatTogether
in List. 1.6). Obviously, if a fork is currently assigned to an eating philosopher
as the right fork, it cannot be assigned to another philosopher as a left fork at
the same time (since its value can be RIGHT or LEFT (or FREE), but not both.
Indeed, the vacuity analysis reports that this guarantee is vacuous. Further, in
the analysis output we see that the vacuity core of this vacuous guarantee is the
empty set, i.e., it is implied from the definition of the fork state enum, and not
from other assumptions or guarnatees in the specifications. Such vacuities are
called trivial vacuities (see []).

Second, one may define a parameteric justice guarantee to express that even-
tually every philosopher will not eat (eventuallyNotEating in List. 1.6). In
this case, it is perhaps less easy to see whether these guarantees are vacuous. We
run Spectra’s vacuity analysis and find out that it is indeed vacuous. We further
see that the vacuity core consists of two formulas, the assumption stopsEat-
ing and the guarantee dontGiveForkIfNoHungry. Intuitively, we explain
the vacuity by noting that every philosopher must eventually fulfill her hunger,
and following that, the system guarantees to stop serving her forks.

Spectra Example: Dining Philosophers 5

1|gar adjacentNeverEatTogether: G forall i in Int(0..(N-1))

2 hasTwoForks (i) —>

3 ('hasTwoForks (i+1) & ! (hasTwoForks (i-1)));

4

s|gar eventuallyNotEating{Int (0..(N-1)) i}: GF !hasTwoForks(i);

Listing 1.6. Spectra specification of the Dining Philosophers: vacuous guarantees

3.3 Well-Separation Analysis

One may be interested in checking whether the specification is well separated [3].
To check this use Spectra Add-ons / Well-Separation / Diagonse Well-Separation
of Environment.

Spectra provides two notions of well-separation, with and without taking
system safeties into account. We observe that when we take system safeties into
account, the specification is indeed well-separated, but in the stricter sense, when
system safeties are ignored, the specification is actually non-well-separated. This
means that the system must violate its own guarantees first in order to force the
environment to violate its assumptions.

To find out more we use Spectra Add-ons / Well-Separation / Compute
Non-Well-Separation Counter-Strategy. Studying the state machine description
that Spectra outputs, we learn that the system may violate alwaysKeepFork—
sWhileEating guarantee and take away the forks from some philosopher 4
while she is still eating. Then, on the one hand, the philosopher must keep being
hungry according to keepBeingHungry, and on the other hand, must stop
being hungry eventually according to stopsEating for some i.

Acknowledgements

We thank Keren Solodkin for implementing Spectra’s support for parametric
language constructs. This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 638049, SYNTECH).

References

1. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1, 115—
138 (1971). https://doi.org/10.1007/BF00289519, https://doi.org/10.1007/
BE00289519

2. Maoz, S., Ringert, J.O.: GR(1) synthesis for LTL specification patterns. In: ES-
EC/FSE. pp. 96-106. ACM (2015)

3. Maoz, S., Ringert, J.O.: On well-separation of GR(1) specifications. In: Zimmer-
mann, T., Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016. pp. 362-372. ACM (2016), http:
//doi.acm.orqg/10.1145/2950290.2950300

https://doi.org/10.1007/BF00289519
https://doi.org/10.1007/BF00289519
https://doi.org/10.1007/BF00289519
http://doi.acm.org/10.1145/2950290.2950300
http://doi.acm.org/10.1145/2950290.2950300

6 Ilia Shevrin

4. Maoz, S., Ringert, J.O.: Spectra: A specification language for reactive systems.
CoRR abs/1904.06668 (2019), http://arxiv.org/abs/1904.06668

5. Maoz, S., Shalom, R.: Inherent vacuity for GR(1) specifications. In: ESEC/FSE.
ACM (2020), to appear.

http://arxiv.org/abs/1904.06668

Spectra Example: Dining Philosophers

A Complete Specification

-

import "DwyerPatterns.spectra"
module DiningPhilosophers

N

IS

type State = {FREE, LEFT, RIGHT};
define N := 5;

env boolean[N] hungry;

sys State[N] forks;

predicate hasTwoForks (Int (0.. (N-1))
9 forks[i%N] = RIGHT & forks[(i+1)%N

o

[

g

0

i)
]

= LEFT;
10
11{asm initialNoHungry: forall i in Int(0..(N-1)) . 'hungryl[il];
12
13| asm keepBeingHungry: G forall i in Int(0..(N-1)) . (hungry[i]

& !'hasTwoForks (i)) -> next (hungry[i]);

15| asm stopsEating{Int(0..(N-1)) i}: pRespondsToS (hasTwoForks (i)
, ‘hungryl[il]);

i7|gar initialForksFree: forall i in Int(0..(N-1)) . forks[i] =
FREE;

19| gar alwaysKeepForksWhileEating: G forall i in Int (0..(N-1))
(hasTwoForks (i) & hungry[i]) -> (next (hasTwoForks(i)));
20
21| gar alwaysGivelLeftAndRightTogether: G forall i in Int (0.. (N

-1)) . (forks[i] = RIGHT <-> forks[(i+1)%N] = LEFT);

22

23| gar mustPutDownFork: G forall i in Int(0..(N-1)) . (forks[i]
= LEFT -> next (forks[i]) != RIGHT) & (forks[i] = RIGHT ->
next (forks[i]) != LEFT);

24
25| gar dontGiveForkIfNoHungry: G forall i in Int(0..(N-1)) . (!
hungry[i] -> (next (forks[i] != RIGHT) & next (forks[(i+1l)%
N] != LEFT)));

26
27| gar eventuallyEats{Int(0..(N-1)) 1i}: pRespondsToS (hungry[i],
hasTwoForks (1)) ;

Listing 1.7. Complete Spectra specification of the Dining Philosophers

	Spectra Example: Dining Philosophers
	Introduction
	The Specification
	Assumptions
	Guarantees

	Example Analyses
	Realizability and Unrealizability Analysis
	Vacuity Analysis
	Well-Separation Analysis

	Complete Specification

