
Spectra Example:
Cinderella-Stepmother Problem

Ilia Shevrin and Matan Yossef

Tel Aviv University

Abstract. The Cinderella-Stepmother problem is a two player game
in which Cinderella fights her stepmother for keeping the safety of a
water buckets system. This report presents a formal specification of the
problem in the Spectra language. We model it as a safety game between
Cinderella as the system and the stepmother as the environment.

1 Introduction

The Cinderella-Stepmother problem is a two player game in which Cinderella
fights her stepmother for keeping the safety of a water buckets system 1. The
starting position of the game consists of N empty water buckets that are arranged
in a circle. Each bucket has a capacity of B water units. In each turn, Cinderella’s
stepmother pours A water units into the buckets in a distribution of her choice.
Followed by this, Cinderella empties C adjacent buckets. Cinderella’s stepmother
again pours A water units into the buckets and so on. As Cinderella’s stepmother
tries to entirely fill one of the buckets, i.e., fill it with B water units, Cinderella
plays a safety game of avoiding it.

The goal is to describe a behavior for Cinderella such that her stepmother
will not be able to fill any of the buckets entirely, i.e., each will never contain B
water units, assuming an unlimited supply of water for Cinderella’s stepmother.

We present a Spectra [4] specification for the problem and a simulation of its
solution. All related files are available from http://smlab.cs.tau.ac.il/
syntech/.

2 The Specification

We model the problem as a parametric specification that depends on the follow-
ing parameters:

• N represents the number of water buckets in the system.
• B represents the maximum number of water units a bucket can contain.
• A represents the number of water units the stepmother pours into the buckets

in each turn.
1 Variants of the problem have appeared in the literature, e.g., [1,2,3]. One previous

formulation of the problem appears in the git repository of the Slugs synthesizer
https://github.com/VerifiableRobotics/slugs

Copyright held by the authors, 2020.

http://smlab.cs.tau.ac.il/syntech/
http://smlab.cs.tau.ac.il/syntech/
https://github.com/VerifiableRobotics/slugs


2 Ilia Shevrin and Matan Yossef

• C represents the number of adjacent buckets Cinderella empties in each turn.

1 define N := 5;
2 define C := 2;
3 define B := 9;
4 define A := 5;

Listing 1.1. Spectra specification of the Cinderella-stepmother problem: defines of
problem parameters

As we will see later, the realizability of the problem depends on the config-
uration of the parameters. For now, we will use the parameters values that are
defined in List. 1.1.

The model refers to the wicked stepmother’s water supply as the environment.
Meanwhile, Cinderella acts as the system and tries to keep the buckets’ state
safe. The variable declarations are shown below in List. 1.2.

1 env Int(0..A)[N] unitsToFill;
2

3 sys Int(0..B)[N] buckets;
4 sys Int(0..(N - 1)) firstToEmpty;
5

6 predicate inAdjacentBucketsToEmpty(Int(0..(N-1)) i):
7 (i >= firstToEmpty & i < firstToEmpty + C) |
8 i < firstToEmpty + C - N;

Listing 1.2. Spectra specification of the Cinderella-stepmother problem: declaration
of system and environment variables and a useful predicate

Each step in the game consists of stepmother’s choice of dividing A units of
water between N buckets, represented by the environment array unitsToFill,
followed by Cinderella’s choice of emptying C adjacent buckets, represented by
the system integer firstToEmpty. The buckets array is a system array repre-
sented by buckets.

We define a useful predicate, inAdjacentBucketsToEmpty(i), which
represents a bucket that is going to be emptied, i.e., it belongs to the adjacent sub
array that Cinderella chose. More formally, bucket with index i is emptied iff it
holds that firstToEmpty ≤ i < firstToEmpty+C or i < firstToEmpty+
C− N to account for the cyclic nature of the buckets array. See List. 1.2.

1 gar forall i in Int(0..(N - 1)). buckets[i] = 0;

Listing 1.3. Spectra specification of the Cinderella-stepmother problem: initial state
guarantees

Initially, the buckets are empty (see List. 1.3). We assume that the step-
mother fills exactly A water units on her turn (see List. 1.4). We use a Spectra
construct that allows us to conveniently define numeric operations on arrays. In
this case, sum syntactically translates to the sum of all the elements in the array.



Spectra Example: Cinderella-Stepmother Problem 3

1 asm alw unitsToFill.sum = A;
2 // Translates to : asm alw unitsToFill[0] + unitsToFill[1] +

unitsToFill[2] + unitsToFill[3] + unitsToFill[4] = A;

Listing 1.4. Spectra specification of the Cinderella-stepmother problem: stepmother
assumption

The next two guarantees, shown in List. 1.5, specify the next state of
the buckets array following the stepmother’s decision of which buckets to fill
combined with Cinderella’s decision of which buckets to empty. Specifically,
the next state value of an emptied bucket i is the quantity that the step-
mother chooses to fill into this bucket on the next step (next(buckets[i]
= next(unitsToFill[i])). The next state value of a non-emptied bucket
is its current value plus the quantity that the stepmother chooses to fill
into this bucket on the next step (next(buckets[i] = buckets[i] +
next(unitsToFill[i])).

1 gar G forall i in Int(0..(N - 1)).
2 inAdjacentBucketsToEmpty(i)
3 -> (next(buckets[i]) = next(unitsToFill[i]));
4

5 gar G forall i in Int(0..(N - 1)).
6 !inAdjacentBucketsToEmpty(i)
7 -> (next(buckets[i]) = buckets[i] + next(unitsToFill[i]));

Listing 1.5. Spectra specification of the Cinderella-stepmother problem: Cinderella’s
guarantees

3 Using the Specification

3.1 Realizability

We used Spectra to check the realizability of the problem in different configu-
rations. We see some interesting results, where some are perhaps less intuitive
than others.

Table 1. Realizabily Results for N=5 Buckets

B (bucket capacity) A (added units) C (adjacent buckets to empty) Realizable?

6 4 2 N
7 4 2 N
8 4 2 Y
6 4 3 N
7 4 3 Y
9 5 2 N
10 5 2 Y



4 Ilia Shevrin and Matan Yossef

Realizability checking does not provide any information about how can Cin-
derlla keep the system safe (when the specification is realizable) or how can
the wicked stepmother fill one of the buckets entirely (when the specification is
unrealizable). For these, we use two other useful Spectra tools as follows.

3.2 Counter-strategies

Spectra allows the engineer to synthesize a concrete counter-strategy. For the
unrealizable configurations, we can create a controller that shows how the step-
mother can fill one of the buckets entirely in response to any sequence of Cin-
derella’s moves.

For example, consider the configuration of 5 buckets with capacity of 6 water
units, where the stepmother can add 4 water units at each step and Cinderella
can empty 2 adjacent buckets as a response. This configuration of the specifi-
cation is unrealizable. After synthesizing a counter-strategy, Spectra outputs a
textual representation of the controller to the console, similar to the one below.

If we follow the controller’s states, starting from the INI state to all the
DEAD states, we can get a grab at a counter-strategy that the stepmother can
use to fill one of the buckets entirely. We visualize one such counter-strategy
below:



Spectra Example: Cinderella-Stepmother Problem 5

The stepmother first pours 2 water units into two buckets that are separated
by at least one bucket, e.g., buckets 2 and 4:

Cinderella can empty only one of the buckets (since it can empty only two
adjacent buckets). W.L.O.G. it empties bucket number 2:

Then, the stepmother pours 1 water unit to bucket 4 and 3 water units to
bucket 2:

Again, Cinderella can empty only one of the buckets (since it can empty only
two adjacent buckets). W.L.O.G. it empties bucket number 2:



6 Ilia Shevrin and Matan Yossef

The stepmother pours 4 water units to bucket 4 to fill it entirely and win:

3.3 Cinderlla-Stepmother Simulation

To simulate the Cinderella-Stepmother problem, download the zipped simula-
tion project and load it to an eclipse workspace. This simulation simulates the
Cinderella-Stepmother game with 5 buckets.

To use the simulation, take the following steps:

1. Choose parameter values for the problem - the number of buckets Cinderella
can empty in one turn, the number of water units the stepmother can add
in one turn and the capacity of the buckets. Edit the bucketsToEmpty,
addedWaterUnits, and capacity parameters of Board.java in the
src folder accordingly to match the values you chose.

2. In CinderellaStepmotherN5.spectra edit the defines C (number of
buckets Cinderella can empty), B (bucket capacity) and A (number of wa-
ter units the stepmother adds) with the parameter values you chose and
synthesize a symbolic controller for the specification.

3. Run the java simulation.

Acknowledgements

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 638049, SYNTECH).

References

1. T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. A constraint-based
approach to solving games on infinite graphs. In POPL’14, pages 221–234. ACM,
2014.

2. M. H. L. Bodlaender, C. A. J. Hurkens, V. J. J. Kusters, F. Staals, G. J. Woeginger,
and H. Zantema. Cinderella versus the wicked stepmother. In TCS’12, volume 7604
of Lecture Notes in Computer Science, pages 57–71. Springer, 2012.

3. A. Katis, G. Fedyukovich, H. Guo, A. Gacek, J. Backes, A. Gurfinkel, and M. W.
Whalen. Validity-guided synthesis of reactive systems from assume-guarantee con-
tracts. In TACAS’18, volume 10806 of Lecture Notes in Computer Science, pages
176–193. Springer, 2018.

4. S. Maoz and J. O. Ringert. Spectra: A specification language for reactive systems.
CoRR, abs/1904.06668, 2019.



Spectra Example: Cinderella-Stepmother Problem 7

A Complete Specification

1 spec Cinderella
2

3 define N := 5;
4 define C := 2;
5 define B := 9;
6 define A := 5;
7

8 env Int(0..A)[N] unitsToFill;
9

10 sys Int(0..B)[N] buckets;
11 sys Int(0..(N - 1)) firstToEmpty;
12

13 predicate inAdjacentBucketsToEmpty(Int(0..(N-1)) i):
14 (i >= firstToEmpty & i < firstToEmpty + C) |
15 i < firstToEmpty + C - N;
16

17 asm alw unitsToFill.sum = A;
18 // Translates to : asm alw unitsToFill[0] + unitsToFill[1] +

unitsToFill[2] + unitsToFill[3] + unitsToFill[4] = A;
19

20 gar forall i in Int(0..(N - 1)). buckets[i] = 0;
21

22 gar G forall i in Int(0..(N - 1)).
23 inAdjacentBucketsToEmpty(i)
24 -> (next(buckets[i]) = next(unitsToFill[i]));
25

26 gar G forall i in Int(0..(N - 1)).
27 !inAdjacentBucketsToEmpty(i)
28 -> (next(buckets[i]) = buckets[i] + next(unitsToFill[i]));


	Spectra Example: Cinderella-Stepmother Problem
	Introduction
	The Specification
	Using the Specification
	Realizability
	Counter-strategies
	Cinderlla-Stepmother Simulation

	Complete Specification


