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Abstract—Specifications for reactive systems synthesis consist
of assumptions and guarantees. However, some specifications
may include unnecessary assumptions, i.e., assumptions that
are not necessary for realizability. While the controllers that
are synthesized from such specifications are correct, they are
also inflexible and fragile; their executions will satisfy the
specification’s guarantees in only very specific environments.

In this work we show how to detect unnecessary assumptions,
and to transform any realizable specification into a corresponding
realizable core specification, one that includes the same guaran-
tees but no unnecessary assumptions. We do this by computing an
assumptions core, a locally minimal subset of assumptions that
suffices for realizability. Controllers that are synthesized from
a core specification are not only correct but, importantly, more
general; their executions will satisfy the specification’s guarantees
in more environments.

We implemented our ideas in the Spectra synthesis environ-
ment, and evaluated their impact over different benchmarks
from the literature. The evaluation provides evidence for the
motivation and significance of our work, by showing (1) that
unnecessary assumptions are highly prevalent, (2) that in almost
all cases the fully-automated removal of unnecessary assumptions
pays off in total synthesis time, and (3) that core specifications
induce more general controllers whose reachable state space is
larger but whose representation more memory efficient.

I. INTRODUCTION

Reactive synthesis is an automated procedure to obtain

a correct-by-construction reactive system from its temporal

logic specification [39]. GR(1) is a fragment of Linear Tem-

poral Logic (LTL) that has an efficient symbolic synthesis

algorithm [8]. GR(1) specifications include assumptions and

guarantees that specify what should hold in all initial states,

in all states and transitions (safeties), and infinitely often on

every computation (justices). The expressive power of GR(1)

covers almost all well-known LTL specification patterns [15],

[25]. It has already been used in several application domains,

e.g., to specify and implement autonomous robots [1], [23],

[26], [46], control protocols for smart camera networks [37],

distributed control protocols for aircraft vehicle management

systems [36], and device drivers [41]. Several tools support

GR(1) synthesis [4], [17], [29].

Specifications for reactive systems are not easy to write

(e.g., [40]). Moreover, while writing the guarantees is difficult,

writing the assumptions is even harder, as they are typically

based on tacit, implicit domain knowledge (see, e.g., [5], [28]).

On the one hand, when one writes too few or too weak

assumptions, the specification becomes unrealizable. On the

other hand, realizable specifications for synthesis may include

too many or too strong assumptions. Indeed, as we show in

our evaluation, many specifications from the literature include

many more assumptions than necessary for realizability. In-

tuitively, while the controllers that are synthesized from such

specifications are correct, they are also inflexible and fragile;

their executions will satisfy the specification’s guarantees in

only very specific environments. In contrast, controllers that

are synthesized from specifications with less assumptions

would still be correct and, importantly, more general; their

executions will satisfy the specification’s guarantees in more

environments.

Unnecessary assumptions are hard to manually detect.

Moreover, two assumptions, each unnecessary on its own,

may not be unnecessary together. Our first contribution is the

implementation of a tool that detects them.

Following our ability to detect unnecessary assumptions, we

introduce the notion of a core specification, one that includes

the same guarantees but no unnecessary assumptions. We

obtain a core specification from a realizable specification by

computing an assumptions core, a locally minimal subset of

assumptions that suffices for realizability. By definition, all as-

sumptions that are outside the realizable core are unnecessary

for realizability. While cores are typically used in the literature

for fault localization, our use of cores is different. We use it

to detect the necessary constraints for the realizability of the

specification at hand.

Beyond the introduction of a tool for the detection of

unnecessary assumptions, and the computation of core speci-

fications, the significance of our work is based on two pillars.

First, we provide evidence showing that assumptions that
are unnecessary for realizability are prevalent: almost all

(91%) specifications in well-known benchmarks include at

least one unnecessary assumption, and in more than 70% of

these benchmark specifications, at least half of the assumptions

are unnecessary. Second, we show that the fully-automated
removal of unnecessary assumptions from these specifica-
tions takes time but pays off: in almost all cases, removal

of unnecessary assumptions plus synthesis from the resulting

core specification, is faster than synthesis from the original

specification.

In addition, we show that core specifications typically

induce more general controllers whose reachable state space

is larger but whose representation more memory efficient. We
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further show that applying various analyses to core specifica-

tions is typically much faster than applying the same analyses

to the original specifications.

We implemented our ideas on top of Spectra, a rich

specification language and open source tool set for reactive

synthesis [29], [44]. We validated and evaluated our work

on different benchmarks from the literature, including the

SYNTECH benchmarks, hundreds of specifications written by

senior undergraduate students in semester-long project classes,

and various well-known specifications taken from the reactive

synthesis literature, written by experts and researchers. We

present the evaluation in Sect. VI.

It is important to note that the existence of unnecessary as-

sumptions, even in specifications created by experts, is perhaps

not surprising. It is well-known that requirements documents

typically include different kinds of redundancies [45] and

unnecessary assumptions are one example of these. However,

absent automated tools to detect unnecessary assumptions, it

is practically impossible to notice them. This further motivates

our work.

Note that unnecessary assumptions are not necessarily

wrong. They may correctly specify the expected behavior

of the real environment in which the system will operate.

We identify assumptions that are logically unnecessary for

realizability, regardless of their correctness w.r.t. the real

environment.

Our work relates to previous works on the computation of

other kinds of cores for temporal specifications for synthesis,

and on other quality issues in specifications (unrealizable

cores [22], [32], non-well-separation [27], and inherent vacu-

ity [31]). A definition of assumptions that are unnecessary

for realizability appeared in [13], [16]. In [31] the impact

of the removal of inherently vacuous specification elements

(not only assumptions), showed a significant improvement of

synthesis running times in some cases. Since our definition

of unnecessary assumptions is broader (because it concerns

realizability and does not require semantic equivalence), we

can expect to find more of them by definition, with a greater

impact on running times. To our knowledge, our work is the

first to measure the prevalence of unnecessary assumptions

in specifications for synthesis, to compute a realizable core,

to use core specifications in order to synthesize more general

controllers, and to demonstrate their advantages on existing

benchmarks. We discuss related work in Sect. VII.

II. RUNNING EXAMPLE

As a running example for this paper we use a variant of

a popular specification from the literature, presenting a robot

that has to evade a moving obstacle. The example is small

and simple, to fit the paper presentation. In our evaluation,

described in Sect. VI, we have used larger and more complex

specifications, taken from benchmarks.

A Spectra specification for the moving obstacle evasion

problem is shown in Lst. 1 and Lst. 2. The example setting

is an n × n grid world where a robot moves between cells

Listing 1
SPECIFICATION: ROBOT EVADING MOVING OBSTACLE

(DEFINITIONS, VARIABLES, AND PREDICATES)

1 spec RobotEvadingMovingObstacle
2

3 // Define board size
4 define SIZE := 32;
5

6 // Define obstacle docking in lower right corner
7 define obsDock := (obsX = SIZE-1) & (obsY = SIZE-1);
8

9 // EnvVars: Obstacle location and waiting state
10 env Int(1..(SIZE-1)) obsX; env Int(1..(SIZE-1)) obsY;
11 env boolean obsWait;
12

13 // SysVar: Robot location
14 sys Int(1..SIZE) robX; sys Int(1..SIZE) robY;
15

16 // Predicates constraining robot and obstacle movement
17 predicate moveRob(Int(1..SIZE) pos):
18 pos+1 =next(pos) | pos =next(pos) | pos-1 =next(pos);
19

20 predicate moveObs(Int(1..(SIZE-1)) pos):
21 pos+1 =next(pos) | pos =next(pos) | pos-1 =next(pos);
22

23 // Predicates for the positions of objects
24 predicate robAt(Int(1..SIZE) x, Int(1..SIZE) y):
25 robX=x & robY=y;
26

27 predicate obsNotAt(Int(1..SIZE) x, Int(1..SIZE) y,
28 Int(1..(SIZE-1)) obX, Int(1..(SIZE-1)) obY):
29 (x != obX | y != obY) &
30 (x != obX + 1 | y != obY) &
31 (x != obX | y != obY + 1) &
32 (x != obX + 1 | y != obY + 1);

(in Lst. 1, n = 32 denoted by the constant SIZE defined at

l. 4). The robot (whose position is encoded by variables robX
and robY at l. 14) must make sure to evade a larger, moving

obstacle that occupies 2×2 grid cells (its upper left position is

encoded by variables obsX and obsY at l. 10). The system

controls the robot. The environment controls the obstacle. In

each step, the obstacle and the robot can stay in place or move

to any empty adjacent cell. The robot is more agile and can

make two steps upon each step of the obstacle, i.e., the obstacle

is forced to wait every other turn (see the variable obsWait
at l. 11). We define the lower right position as the docking

position of the obstacle (see the definition of obsDock at

l. 7). The obstacle is initially at its docking position, and is

assumed to visit this position infinitely often for maintenance.

There are four predicates we define for a more concise and

readable specification. Two movement limitation predicates at

l. 17 and l. 20 that allow a change of at most one in each

coordinate. Predicate robAt (l. 24) determines if the robot

is at a specific position, and predicate obsNotAt (l. 27)

determines if a given board position is not one of the four

obstacle positions, given its (usual) upper left position.

The above behaviors are encoded into assumptions and

guarantees.1 Six assumptions specify the expected behavior of

the obstacle. The obstacle is initially at its docking position

(l. 36), and it is expected to reach that position infinitely

often during the run (l. 40). The Boolean obsWait variable

is initially set to false (l. 44), flips every step (l. 48), and

forces the obstacle not to move when true (l. 52). Finally,

1We use Spectra’s alw and alwEv for LTL G and GF resp., see [29].
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Listing 2
SPECIFICATION: ROBOT EVADING MOVING OBSTACLE (CONT.,

ASSUMPTIONS AND GUARANTEES)

34 // The obstacle is initially docking
35 asm initiallyObstacleAtLowerRightCorner:
36 ini obsDock;
37

38 // The obstacle must not go forever without maintenance
39 asm obstacleMustDockInfinitelyOften:
40 alwEv obsDock;
41

42 // The obstacle is initially not waiting
43 asm initiallyObsWaitFalse:
44 ini !obsWait;
45

46 // The obstacle waits every other turn
47 asm obstacleWaitSwitches:
48 alw (obsWait->next(!obsWait))&(!obsWait->next(obsWait));
49

50 // A waiting obstacle does not move
51 asm obstacleDoesNotMoveWhenObsWait:
52 alw obsWait->(next(obsX)=obsX & next(obsY)=obsY);
53

54 // The obstacle can move only one step in each direction
55 asm obstacleMovesAtMostOne:
56 alw moveObs(obsX) & moveObs(obsY);
57

58 // The robot is initially at top left corner
59 gar initiallyRobotAtTopLeftCorner:
60 ini robAt(1,1);
61

62 // The robot can move only one step in each direction
63 gar robotMovesAtMostOne:
64 alw moveRob(robX) & moveRob(robY);
65

66 // Robot never occupies obstacles’s next position
67 gar robotAvoidsObstacle:
68 alw obsNotAt(robX,robY, next(obsX),next(obsY));
69

70 // Robot never occupies obstacle cells
71 gar robotNotOnObstacle:
72 alw obsNotAt(robX, robY, obsX, obsY);

we restrict obstacle movement to at most one step in both

directions (l. 56).

Four guarantees specify the required behavior of the robot.

The robot is initially at the top left corner (l. 60), and its

movement has a similar restriction to that of the obstacle

(l. 64). Finally, the robot is required to stand neither in any

position that the obstacle will occupy at the next step (l. 68),

nor any position it currently occupies (l. 72).

A. A Core Specification

The example specification is realizable and can be used in

order to synthesize a controller.2 Interestingly, however, this

synthesized controller is unnecessarily specific: two of the as-

sumptions in its specification are unnecessary for realizability.

Using our new tool, the engineer can identify an assump-

tions core, a locally minimal subset of assumptions that

are necessary for realizability, ignore the other, unnecessary

assumptions, and use the resulting core specification to syn-

thesize a new controller which is more general; its executions

will satisfy the guarantees in more environments.

Specifically in our example, our tool detects an assumption

core that consists of the assumptions at lines 36, 48, 52 and

2Indeed, we have used Spectra to do it and to execute this controller
against a programmed moving obstacle that satisfies the assumptions in the
specification. See the video in [43].

Listing 3
POLE POSITIONED AT (5,5)

1 // The obstacle never covers position (5,5)
2 asm obstacleNotAtPole:
3 alw obsNotAt(5, 5, obsX, obsY);
4

5 // The robot is never at position (5,5)
6 gar robotNotAtPole:
7 alw !robAt(5, 5);

56, deeming the two remaining assumptions at lines 40 and

44 unnecessary for realizability. This means that the controller

synthesized from the core specification, where these two un-

necessary assumptions are ignored, will satisfy the guarantees

in additional environments, specifically in environments where

the obstacle may wait in the first state and where it may not

need any maintenance.

B. An Extended Example

Suppose now that there is a pole at position (5,5) which

prevents both the robot and the obstacle (any part of it) from

occupying that space. Lst. 3 adds the relevant obstacle assump-

tion and robot guarantee. For a specification that consists of

Lst. 1 – 3 together, our tool detects a core that includes the

assumption in Lst. 3 and the assumptions at lines 36 and 56 in

Lst. 2. Put in another way, in this case, our tool finds that the

assumptions in lines 40, 44, 48, and 52 are all unnecessary for

realizability. This means that when one synthesizes a controller

from the core specification, the robot will evade the moving

obstacle even in an environment where the obstacle is as agile

as the robot!

Finally, note that when the assumptions in lines 40, 44, 48,

and 52, are ignored, the variable obsWait becomes redun-

dant. Thus, in this sense, the synthesis problem presented to

the synthesizer becomes smaller; technically, the GR(1) game

presented to the synthesizer will not include this variable.

III. PRELIMINARIES

A. Linear Temporal Logic (LTL)

We use the standard definitions of linear temporal logic
(LTL), e.g., as found in [8], over future temporal operators X
(next), U (until), F (finally), and G (globally), and past temporal

operator H (historically).

An LTL formula ϕ is satisfiable iff there is a computation

σ s.t. σ |= ϕ. LTL formulas can be used as specifications of

reactive systems, where atomic propositions are interpreted

as environment (input) and system (output) variables. An

assignment to all variables is called a state.

B. GR(1) and Realizability

GR(1) is a fragment of LTL. A GR(1) specification contains

initial assumptions and guarantees over initial states, safety

assumptions and guarantees relating the current and next

state, and justice assumptions and guarantees requiring that an

assertion holds infinitely many times during a computation.

We use the following abstract syntax definition of a GR(1)

specification taken from [31].
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Definition 1 (Abstract syntax of a specification). A GR(1)
specification is a tuple Spec = 〈Ve, Vs, D,Me,Ms〉, where Ve

and Vs are sets of environment and system variables respec-
tively, D : Ve ∪ Vs → Doms assigns a finite domain to each
variable3, and Me and Ms are the environment and system
modules. A module is a triplet M = 〈I, T, J〉 that contains
sets of initial assertions I = {In}in=1, safety assertions T =
{Tn}tn=1, and justice assertions J = {Jn}jn=1 of the module,
where i = |I|, t = |T | and j = |J |. The set of elements of
module M = 〈I, T, J〉 is BM = I ∪{G Ti}ti=1 ∪{GF Ji}ji=1.

Given a set Z of variables, Z ′ = {Xv|v ∈ Z} contains a

copy of its variables at the next state. Let Me = 〈Ie, Te, Je〉,
Ms = 〈Is, Ts, Js〉, and V = Ve ∪ Vs. Then, the elements

of Ie, Te, Je, Is, Ts and Js are propositional logic expressions

over Ve,V ∪ V ′
e ,V,V,V ∪ V ′ and V respectively.

GR(1) has efficient symbolic algorithms for realizability

checking and controller synthesis, presented in [8], [38].

For this a game structure of a two-player game G =
〈V,X ,Y, θe, θs, ρe, ρs, ϕ〉 is defined. The GR(1) game has a

set of variables V = Ve∪Vs, environment and system variables

(X = Ve and Y = Vs resp.), environment and system initial

states (θe = ∧d∈Ied and θs = ∧d∈Isd resp.), environment and

system transitions (ρe = ∧t∈Te
t and ρs = ∧t∈Ts

t resp.), and

a winning condition ϕ =
∧

j∈Je
GFj → ∧

j∈Js
GFj.

A GR(1) specification is realizable, i.e., allows an imple-

mentation, iff the system wins the game. Roughly, this means

that if the environment keeps all initial assumptions then

the system should keep all initial guarantees, as long as the

environment keeps all safety assumptions the system should

keep all safety guarantees, and in all infinite plays, if the

environment keeps all justice assumptions the system should

keep all justice guarantees.

For this the algorithm of [8], [38] computes a winning

region which is a set of winning states from which the system

has a winning strategy. A winning strategy prescribes the

outputs of a system for all possible environment choices that

allows the system to win. The winning region is computed

according to a fixed-point computation over transitions and

justices alone. GR(1) realizability checks if for all initial

environment choices the system can enter a winning state. The

complexity of realizability checking is O(nmN2), where N is

the size of the state space 2X∪Y and n and m are the number

of justice assumptions and guarantees resp. GR(1) synthesis

computes a winning strategy, if one exists.

C. Reachable States and Reachability Diameter

A synthesized controller can be viewed as a Kripke structure

M = (S, I, T, L), where S is a set of states, I ⊆ S are

the initial states, T ⊆ S × S is the transition relation, and

L : S → 2V labels states with assignments to variables in V .

Symbolic controller synthesis [8], [38] represents the result-

ing controller symbolically, using two BDDs, one for the set

3The use of any finite domain rather than only Boolean variables is
straightforward and supported by many tools, including Spectra.

of initial states over variables V , and one for the transition

relation over variables V ∪ V ′.
The number of reachable states of a controller M is the

number of states reachable by a finite number of applications

of the transition relation T , starting from any initial state.

The reachability diameter rd(M) of a controller M is the

minimum number of transitions required in order to reach all

reachable states from the initial states (see its definition in [3]).

IV. DEFINING AND COMPUTING A CORE SPECIFICATION

To transform a given realizable specification into a cor-

responding core specification, one that includes the same

guarantees but no assumptions that are unnecessary for realiz-

ability, we formally define and then show how to compute an

assumption core, a locally minimal subset of the assumptions

that suffices for realizability.

A. Defining an Assumption Core

We start by defining the general notion of a core and then

continue to the specific definition of an assumption core.

Given a set E, and a monotonic criterion on subsets of E, a

core is a local minimum that satisfies the criterion. Formally:

Definition 2 (Monotonic criterion). A Boolean criterion over
subsets of E is monotonic iff for any two sets A,B such that
A ⊆ B ⊆ E, if A satisfies the criterion then B satisfies the
criterion.

Definition 3 (Core). Given a set E and a monotonic criterion
over its subsets, a set C ⊆ E is a core of E iff C satisfies the
criterion, and all its proper subsets C ′ ⊂ C do not satisfy the
criterion.

Realizability is monotonic w.r.t. subsets of assumptions,

i.e., adding assumptions to a realizable specification keeps it

realizable. Intuitively, this is so because adding assumptions

strengthens the constraints on the environment, and does not

change the constraints on the system. Formally:

Proposition 1 (Realizability is monotonic). Given two spec-
ifications, Spec1 = 〈Ve, Vs, D,M1

e ,Ms〉 and Spec2 =
〈Ve, Vs, D,M2

e ,Ms〉, such that BM1
e
⊆ BM2

e
. Then, if Spec1

is realizable, Spec2 is also realizable. Conversely, if Spec2 is
unrealizable then Spec1 is unrealizable.

We can now define an assumptions core and a core speci-

fication.

Definition 4 (Assumptions Core and Core specification). Con-
sider a realizable specification, Spec = 〈Ve, Vs, D,Me,Ms〉.
An assumptions core is a core C ⊆ BMe

given realizabil-
ity as the monotonic criterion. The specification Spec′ =
〈Ve, Vs, D,M ′

e,Ms〉 such that C = BM ′
e

is a core specifi-
cation of Spec.

Example 1. Recall the running example in Sect. II. Then, the
assumptions of the original specification BMe have a core
C ⊆ BMe

, namely the assumptions at lines 36, 48, 52, and
56. These assumptions are the assumptions C = BM ′

e
of the

core specification.
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B. Computing an Assumptions Core

To compute an assumptions core, we use delta debug-

ging [47] (DDMin), which finds a core of a set, given a mono-

tonic criterion. DDMin recursively checks whether subsets of

the original set meet the criterion. In our case, the set E is the

original set of assumptions (namely, BMe
) and the criterion is

realizability. The complete description of DDMin is available

in the supporting materials [43].

DDMin has been used in the literature to compute guaran-

tees cores in unrealizable specifications [22], [32], but has not

been previously used to compute an assumptions core.

DDMin has quadratic worst-case complexity and logarith-

mic best-case complexity in terms of |E|, i.e., its worst-

case complexity is O(|E|2) and its best-case complexity is

O(log|E|).
Remark 1. We chose to use DDMin, after we empirically
compared its performance with three other algorithms. See
Sect. VII (related work).

V. POTENTIAL IMPACT OF CORE SPECIFICATIONS

We now discuss the potential impact of using core speci-

fications instead of ones that have unnecessary assumptions.

In Sect. V-A we motivate the expected impact in terms of

computation times. In Sect. V-B we consider quality aspects

of the controllers that are synthesized from them, specifically,

reachable state space, reachability diameter, memory usage,

and storage. In Sect. V-C we consider quality aspects of

the specifications themselves, specifically, non-well-separation

and unsatisfiability. In Sect. VI we will report on the results of

measuring all of these for specifications and core specifications

on a large corpus of benchmark specifications.

A. Computation Times

First and foremost, we expect specifications with less as-

sumptions, especially justice assumptions, to induce faster

computation times. For example, recall that the complexity

of realizability checking is O(nmN2), where N is the size of

the state space 2X∪Y and n and m are the number of justice

assumptions and guarantees resp. That is, it is linear in the

number of justice assumptions. Moreover, core specifications

may include less variables, thus reducing the size of the state

space. Similarly, running times of synthesis (controller con-

struction), satisfiability, well-separation, and inherent vacuity,

are expected to improve as well.

Thus, it is important to examine whether the above the-

oretical improvement in computation times indeed occurs in

practice.

B. Properties of Controllers

We consider the following quality properties of controllers

related to their size, simplicity, and efficient use: reachable

state space, reachability diameter, memory usage, and storage.

One measure of the size of a controller is the size of its

reachable state space, i.e., number of states reachable in runs

starting from any initial state.

Removing unnecessary assumptions from a specification

makes the environment less restricted. This may result in a

controller that has a larger number of reachable states, because

the environment is allowed to reach states that the original

specification prevented it from reaching. However, it may also

result in a controller that has a smaller number of reachable

states, depending on the computed core and the synthesizer’s

chosen strategy. Thus, it is important to examine the actual

impact of core specifications in this regard.

The reachability diameter (see Sect. III-C) is a measure

of the simplicity of the controller. Again, it is interesting to

examine the impact of removing unnecessary assumptions in

this regard.

Example 2. Recall the running example in Lst. 1 – 2 and
the additional assumption in Lst. 3. Assume that based on the
core composed of the assumptions in l. 36, l. 56, and the one
in Lst. 3, we remove the assumptions at lines 40, 44, 48, and
52, to obtain a core specification. Recall that this makes the
variable obsWait obsolete. In this case, the reachable state
space is reduced from 3.1E7 to 1.42E7, i.e., by a factor of
≈ 2. The reachability diameter also shrinks from 64 to 32.

If we begin with a specification that includes also the
assumption in Lst. 4, and remove unnecessary assumptions
based on the core composed of the above three assumptions,
the reachable state space expands from 1.07E7 to 1.42E7 while
the reachability diameter shrinks from 89 to 32.

The example above further motivates to examine the actual

impact core specifications may have on the size and simplicity

of synthesized controllers.

The memory usage and storage of a synthesized controller

are additional important measures of its efficient representation

and use. When one actually executes a synthesized controller,

in practice, disk space is a challenge because the controller

typically runs on a rather weak machine with limited power

(robot, IoT device, not the machine where synthesis was

executed), and disk space affects controller load time and

memory usage, see [33].

The memory usage and storage of a synthesized controller

depend on its representation. In our context of GR(1) syn-

thesis, the synthesized controller is represented symbolically

using two BDDs, one for the set of initial states, and one over

variables and their next state copies, representing the transition

relation. Thus, as a measure of the memory usage and storage

of the controller we consider the number of nodes in these

two BDDs and the size they occupy when stored on disk.4

Finally, recently, a more efficient representation of the result

of GR(1) synthesis was suggested in [33], which avoids the

computation of the symbolic controller and instead computes

next states “just-in-time”, only on demand, as they become

necessary during execution. We measure the storage of the

JIT controller by the size of the space it takes on disk (after

variable reordering, see above).

4As these measures depend on BDDs’ variable order, when we compute
them in our evaluation, we use a reordering heuristic before we count the
nodes and save to disk, see Sect. VI.
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Listing 4
SMART OBSTACLE ASSUMPTION

1 asm obstacleIsSmart:
2 alw !obsWait ->
3 ((obsX > robX -> next(obsX) = obsX - 1) &
4 (obsX < robX - 1 -> next(obsX) = obsX + 1) &
5 (obsY > robY -> next(obsY) = obsY - 1) &
6 (obsY < robY - 1 -> next(obsY) = obsY + 1));

C. Quality Aspects of The Specifications

1) Non-Well-Separated Specifications: Some specifications

are realizable because the system can use a strategy that makes

the environment fail instead of fulfilling its guarantees.5 Such

a specification is called non-well-separated [21], [27].

Removing unnecessary assumptions may turn a non-well-

separated specification into a well-separated one. However,

unlike realizability, non-well-separation is not monotonic w.r.t.

assumptions. Specifically this means that removing assump-

tions from a well-separated specification may also turn it into

a non-well-separated one. See Theorem 1 in [27].

2) Unsatisfiable Specifications: A specification may be

unsatisfiable, meaning that there is no computation that can

satisfy both its assumptions and its guarantees. Formally, a

specification Spec = 〈Ve, Vs, D,Me,Ms〉 is unsatisfiable,

if the LTL formula ∧α∈BMs∪BMe
α is unsatisfiable. Though

perhaps counter-intuitive, there are realizable yet unsatisfiable

specifications. For example, it could be that the assumptions

are already unsatisfiable, regardless of the guarantees. Such

specifications are vacuously realizable.

Removing unnecessary assumptions cannot turn a satisfiable

specification into an unsatisfiable one, so core specifications

will not exacerbate the problem of unsatisfiability. However,

removing unnecessary assumptions may, in some cases, turn

an unsatisfiable specification into a satisfiable one. Thus, one

may expect a potential positive impact in this regard.

VI. EVALUATION

We have implemented our ideas on top of Spectra [29], [44],

with the DDMin performance heuristics from [18].

Means to run our implementation, all specifications used in

our evaluation, and all data we report on below, are available

in supporting materials for inspection and reproduction [42],

[43]. We encourage the interested reader to try them out.

The following research questions guide our evaluation.

R0 Are specifications with assumptions that are unnecessary

for realizability prevalent?

R1 Does the computation of core specifications pay off in

terms of synthesis times?

R2 How do core specifications impact controller’s size and

simplicity?

R3 How do core specifications impact analyses running

times?

Below we report on the experiments we have conducted in

order to answer the above questions.

5In event-based systems this was termed anomalous behavior [14]

A. Corpus of Specifications

We use two different types of specifications, SYNTECH
benchmarks, which contain hundreds of specifications written

by undergraduate students in project classes, and three sets of

parametric specifications, written by experts and researchers.

All are well-known and frequently used in the literature.

We use four SYNTECH benchmarks (15, 17, 19, and

20) [18], [44], which include specifications written by 3rd

year undergraduate computer science students in semester-

long project classes taught by the authors of [18]. Bench-

marks SYN15R and SYN17R contain specifications of 10

autonomous Lego robots, and benchmarks SYN19R and

SYN20R contain specifications of Java simulations the stu-

dents wrote, e.g., for a four-way traffic light system. Thus,

all SYNTECH specifications were written for the purpose of

running an actual robot or a Java application, which made them

useful for generating actual code. The SYNTECH benchmarks

have been extensively used for evaluation purposes in the

GR(1) literature, e.g., in [9], [12], [24], [30], [31], [32], [35].

According to [29], in these four SYNTECH benchmarks, the

number of lines of specification (including comments) ranges

from 32 to 602 (medians 201, 414, 169, 216.5 resp.); the

total number of Boolean variables, i.e., the variable count

after the translation to the Spectra kernel, ranges from 4 to

87 (medians 29.5, 45, 36, and 39 resp.); and the total number

of assumptions and guarantees, excluding any assumptions or

guarantees created by translations to the kernel, ranges from

5 to 105 (medians 42.5, 48, 31.5, 60.5 resp.). These statistics

show that the SYNTECH benchmarks are neither small nor

trivially simple. Note that as time progresses, Spectra specifi-

cations include more complicated constructs, and require more

computational resources in order to synthesize and analyze.

In total, the specification sets we use, SYN15R, SYN17R,

SYN19R, and SYN20R contain 61, 113, 18, and 57 specifica-

tions resp., a total of 249 specifications.

When considering controller properties and synthesis times

below, we look at subsets of the above realizable specification

sets that are both well-separated and whose core specification

is also well-separated. The rationale behind this restriction

of the specification sets in this context is that controllers

synthesized from non-well-separated specifications may not

be useful, see [27]. Specification sets SYN15W, SYN17W,

SYN19W, and SYN20W contain 21, 64, 17, and 47 specifi-

cations resp., a total of 149 specifications.

We further use parametric specifications written by experts

widely used in the literature [2], [6], [7], [8], [9], [10], [11],

[12], [13], [18], [31], [33]:

• 4 AMBA [6] specifications, of different sizes (1 to 4

masters) (described in [13]).

• 4 GENBUF [7] specifications (5, 10, 20, and 30 senders)

• 4 LIFT specifications, from the original GR(1) reactive

synthesis paper [8] (10, 20, 40, and 80 floors).

Note that the AMBA, GENBUF, and LIFT specifications,

were written by formal methods researchers in order to

demonstrate reactive synthesis and examine synthesizers’ per-
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formance, rather than to generate code for an actual system.

Moreover, they are parametric and generated by scripts (for a

given number of masters / senders / floors). Thus, one may

question to what extent they are representative of specifications

that engineers would write in practice. It is still interesting to

find if specifications written by experts contain assumptions

unnecessary for realizability, and to observe the impact of

their removal on running times of analyses. Regardless of the

limitations of these specifications, we report on the effect of

core specifications on their synthesis time and on controllers

synthesized from them.

B. Validation and Experiments Setup
We have implemented an independent automatic test to

check that every assumption core that we found is indeed

a locally minimal subset of the assumptions that maintains

realizability. We ran this test over all the specifications in our

corpus.
We ran all experiments on an ordinary PC, Intel Xeon W-

2133 CPU 3.6GHz, 32GB RAM with Windows 10 64-bit OS,

Java 11 64Bit, and CUDD 3 compiled for 64Bit, using one

core of the CPU.
Times we use are average values of 10 runs, measured

by Java in milliseconds. Although the algorithms we deal

with are deterministic, we performed 10 runs since JVM

garbage collection and BDD dynamic-reordering add variance

to running times.

C. Results: Unnecessary Assumptions in Specifications
Table I shows information about assumptions and assump-

tion cores. Each of the first four rows contains the data for one

of the sets of realizable SYNTECH specifications, and the last

three rows contain information about parametric specifications.

Column #Spec shows the number of specifications in the set.

Columns #Has and #Most show how many specifications

have at least one unnecessary assumption, and in how many

of the specifications at least half of the assumptions are

unnecessary, resp. The columns under #Asm show the average

number of assumptions in the original specifications, and in

the core specifications under Orig. and Core respectively.

The columns under #J.Asm show similar data for justice

assumptions in particular.
The results show that over 91% of the SYNTECH specifi-

cations have unnecessary assumptions (228 out of 249), and

that in over 70% of them at least half of the assumptions are

unnecessary (180 out of 249).
The average number of assumptions on the SYNTECH

specifications drops from 10.96 to 3.4, a 69% reduction.

Importantly, the justice assumptions average drops by a similar

factor from 4.05 to 1.26. Justice assumptions are known to

contribute the most to running times (see Sect. V-A).
For the parametric specifications, in all except one specifi-

cation (11 out of 12), more than half of the assumptions are

unnecessary. All of the assumptions in the LIFT specifications

are unnecessary, and 74% of the assumptions in AMBA speci-

fications are unnecessary. Both results exceed the rate of un-

necessary assumptions in SYNTECH specifications. Given that

Table I
PREVALENCE OF UNNECESSARY ASSUMPTIONS

Spec Set #Spec #Has #Most
#Asm #J.Asm

Orig. Core Orig. Core
SYN15R 61 57 46 5.47 2.36 2.91 1.19
SYN17R 113 105 79 11.71 3.76 4.34 1.36
SYN19R 18 16 14 15.38 4.94 2.83 1.88
SYN20R 57 50 41 13.94 3.24 5.08 0.96

AMBA 4 4 4 12.50 3.25 2 1.5
GENBUF 4 4 3 61.75 26.25 2 2.0
LIFT 4 4 4 112.50 0 0 0.0

Table II
COMPUTATION TIME OF ASSUMPTION REMOVAL PLUS

SYNTHESIS FROM THE CORE SPEC. VS. SYNTHESIS FROM THE

ORIGINAL SPEC.
Spec Set 0.1-1s 1-10s 10-100s ≥ 100s
SYN15W 1.76 - - -
SYN17W 0.80 0.24 1.23 -
SYN19W 0.74 0.92 0.85 0.19
SYN20W 0.61 1.42 0.80 0.75

Spec Set Ratio

AMBA 1.03
GENBUF 18.32
LIFT 0.30

these specifications were written by experts, this is compelling

evidence for the prevalence of unnecessary assumptions. In

this case most justice assumptions are necessary, though there

are originally very few or none of them.

To answer R0: For SYNTECH specifications 69% of all

assumptions (and in particular 69% of the computation-

ally expensive justice assumptions) are unnecessary for

realizability. Unnecessary assumptions exist in almost all

specifications in our corpus. In over 70% of the specifica-

tions at least half of the assumptions are unnecessary for

realizability. In specifications written by experts most or

all of the assumptions are unnecessary. Thus, assumptions

unnecessary for realizability are highly prevalent.

D. Results: Impact on Synthesis Times

Finding a core specification takes time but results in simpler

and smaller specifications. Does it pay off?

Table II compares the running time of assumptions removal

plus synthesis from core specification vs. the running time of

synthesis from the original specification. Synthesis is done in

two parts. First, a realizability computation gathers the infor-

mation about relevant fixed-points, and then this information

is used in order to synthesize the controller symbolically.

The numbers in Table II are the geometric means of the

ratios between the core computation plus core specifications

synthesis running times divided by the synthesis running times

for the corresponding original specifications6. Table II (left) is

dissected into ranges according to the running times of the

original specifications. The ranges are from 0.1 seconds to 1

second, from 1 second to 10 seconds, from 10 seconds to 100

seconds, and over 100 seconds. We use ‘-’ for ranges that

include no relevant specifications. In Table II (right) we have

one such ratio for each set of four specifications.

6We use geometric means as appropriate when considering ratios, so that,
e.g., the mean of 2.0 and 0.5 would be 1.0 and not 1.25.
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Table III
CONTROLLER PROPERTIES (CORE VS. ORIG. RATIO)

Spec Set Cont. Prop. Cont. Size JITC

States Diam Disk Ini Tran Disk

SYN15W
Q1 1 0.66 0.82 0.86 0.81 0.76
Q2 1.02 1 0.92 0.91 0.93 0.95
Q3 1.66 1 0.99 1 1 1.03

SYN17W
Q1 1 0.57 0.30 0.67 0.29 0.26
Q2 1 0.83 0.96 0.94 0.96 0.81
Q3 12.99 1 1.03 1 1.03 1.01

SYN19W
Q1 2.46 1 0.69 0.69 0.7 0.63
Q2 7.94 1 0.82 1 0.79 0.84
Q3 18.86 1 1 1 1.01 0.94

SYN20W
Q1 0.29 1 0.45 0.73 0.43 0.39
Q2 0.77 1 0.82 0.98 0.77 0.71
Q3 1 1 0.99 1.09 1 1.79

AMBA GM 0.25 0.76 0.51 0.77 0.51 0.72
GENBUF GM 1.11 0.88 1.39 0.72 1.39 0.96
LIFT GM 1 0.97 0.06 0.38 0.05 0.42

Numbers lower than 1 show better performance. The lowest

the ratios, the better it is to compute a core and synthesize

using the core specification. For example, the number 0.19 on

the third row in column ≥100s, is the geometric mean of the

ratios of the above running times of SYN19W specifications

for which the running time of synthesis given the original

specification takes over 100 seconds. Thus, the value 0.19

indicates a five times improvement in total synthesis times

on average.

Parametric specification show either a strong improvement

(for the LIFT specifications), or no significant change (for the

AMBA specifications). We discuss the outlier for GENBUF in

Sect. VI-G.

The results show that despite the time spent on detecting
the assumptions core, it is almost always faster to remove
the unnecessary assumptions and synthesize a controller
from the core specification than to synthesize directly from
the original specification.

To answer R1: Computing a core specification pays off. For

specifications that originally take over 100 seconds to syn-

thesize, core computation plus core specification synthesis

is up to five times faster.

E. Results: Impact over Controller Properties

Table III compares between controllers synthesized from

an original specification, and those synthesized from the

corresponding core specifications. All the numbers in the table

are geometric means of ratios between the values of the core

specifications and that of the original specification.

In the two columns under Cont. Prop. we show results

of two properties of the symbolic controller. Column States
shows the ratios of the actual reachable state space represented

by the BDDs of the symbolic controllers. Note that those

states are symbolically represented and not enumerated, which

means that they are states that may occur within runs of the

controller, but they do not each require memory as individual

states. Column Diam shows the ratios between the reachability

diameter of the controllers.

For each set we measure the impact over the size of the

symbolic controller, which appears in the columns under

Cont. Size. Column Disk shows that ratios of the disk

space the controller occupies. Columns Ini and Tran show

the ratios of the number of nodes in the BDD (symbolic)

representation of the initial states and transition relation resp.

Finally, column JITC has the ratio for the disk space

required to store just-in-time controller.

For each SYNTECH specification set, there are three rows

showing quartiles. Rows labeled Q# show quartiles from lower

to higher, e.g., Q1 is the lower 25% value and Q2 is the

median. For example, the number 0.83 in the fifth row under

Diam contains the median of the reachability diameter size

of the symbolic controller of the core specification divided by

the reachability diameter size of the controller of the original

specification. This means that in SYN17W specifications, half

of the symbolic controllers of the core specification have a

reachability diameter at most 83% the size of the reachability

diameter of the controllers of the original specification. For

each parametric set there is one line showing the geometric

mean of the ratio between the value for the original specifica-

tion divided by the value for the core specification.

The results show that while the size of the reachable state

space of the controller may become bigger (e.g., in most

SYN19W specifications) or smaller (e.g., in most SYN20W
specifications), with a tendency towards becoming bigger, the

reachability diameter remains mostly the same with an incli-

nation to become smaller. Thus, even though the controllers

usually have more states, their behavior tends to become

simpler.

This simplicity is reflected in the symbolic representation

of the controller, and in the size of the JIT controller. The

median disk space of both controllers, and of the number of

nodes in the BDDs representing the transition relation and set

of initial states is never bigger for the core specification. The

median reduction in all these values reaches up to about 30%.

To answer R2: Controllers that are synthesized from core

specifications take less space, and are simpler than the ones

synthesized from the original specifications.

F. Results: Impact on Analyses Times

Table IV shows the effect of removing unnecessary assump-

tions on realizability checks, symbolic controller synthesis,

and just-in-time controller synthesis times resp. Here, we

report synthesis times given the output of the realizability

checks, i.e., not counting the realizability checking time. All

three categories have the same structure as Table II (left),

i.e., showing the geometric means of the ratios between com-

putation times for the core specification and for the original

specification. For example, the number 0.02 on the second row

in column 10-100s under Synthesis Computation,

is the geometric mean of the ratios of the above running

times of SYN17W specifications for which the running time

of synthesis (without realizability checking) given the original

specification takes between 10 and 100 seconds. Thus, the
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value 0.02 indicates a 50 times improvement in synthesis times

on average.

We observe that realizability checks are typically several

times faster for core specifications. Synthesis from core spec-

ifications is on average also much faster, for both symbolic

and JIT controllers. The improvement is more noticeable for

JIT controller synthesis.

Table V shows the effect of removing unnecessary assump-

tions on running times of well-separation checks, satisfiability

checks, computation of all specification elements (i.e., assump-

tions and guarantees) inherent vacuities resp. (an element of

a specification is inherently vacuous if its removal does not

change the semantics of the specification, see [31]). The table

has the same structure as Table IV.

We observe that in almost all cases running times improve.

This improvement is especially notable for checking well-

separation, for which the improvement typically reaches sev-

eral orders of magnitude.

Finally, Table VI shows the change in running times of anal-

yses of parametric specifications, in rows AMBA, GENBUF, and

LIFT. Columns Real., Synt., WS, Sat., and Vac. show

results for realizability checks, synthesis, well-separation, sat-

isfiabilty, and vacuities respectively. All numbers are geometric

means of running times of the core specifications divided by

the running times of the original specifications. Numbers lower

than 1 show better performance. For example, the number 0.01

in row GENBUF and column WS shows that the average well-

separation check over the four GENBUF specificatins runs 100

times faster on the core specification. The results show that

running times typically become several times faster.

To answer R3: Analyzing a core specification is typically

several times faster and up to several orders of magnitude

faster than similar analyses over the original specification.

G. Discussion and Additional Results

The evaluation provides strong evidence that (1) unneces-

sary assumptions are prevalent in specifications written by

experts and non-experts alike, that (2) removing unnecessary

assumptions makes synthesis and other analyses faster, and

that (3) controllers synthesized without unnecessary assump-

tions not only work correctly in more environments (by

definition), but are also simpler and take less memory to

represent. We consider the value of point (2) above to be

critical for the future of GR(1) synthesis. Since synthesis is

computationally hard, slow specifications are either limited or

completely abandoned. Making existing tools perform better

is thus essential for both the creation and usefulness of future

specifications.

Our experiments include one outlier to the above positive

results, the GENBUF specification. Although all GENBUF
specifications have many unnecessary assumptions (about 35

out of 61 on average, see Table I), the impact of their removal

on total synthesis running time (including core computation)

is negative (see Table II). That said, while the impact on

controller properties and synthesis time alone is negative as

well, the impact on other analyses is positive (see Tables III

and VI). We are not sure what is the reason for this anomaly.

One may suggest that some of the assumptions we detected

are not unnecessary for realizability but instead are part of

a specification where the set of guarantees is incomplete.

However, since the SYNTECH specifications we used for

the evaluation were synthesized and applied for actual Lego

robots and Java applications, the functionality of the resulting

controllers was examined in practice (actual executions ob-

served by the students who wrote the specifications), and since

the parametric specifications we considered were written by

experts in order to serve as benchmarks for synthesis, we have

some confidence regarding the completeness of the guarantees.

Finally, we examined the impact of core specifications

on quality aspects, well-separation and satisfiability. Recall

that removing unnecessary assumptions may turn a non-well-

separated specification into a well-separated one. However,

it may also turn a well-separated specification into a non-

well-separated one. Thus, the potential impact in this regard

may vary. Also recall that removing unnecessary assumptions

cannot turn a satisfiable specification into an unsatisfiable

one, however, it may turn an unsatisfiable specification into

a satisfiable one. Thus, one may expect a potential positive

impact in this regard. See Sect. V-C.

In our experiments we found that the core specifications

of all unsatisfiable specifications in our corpus are satisfiable.

Thus, the core can assist the engineer in removing constraints

while keeping the guaranteed functionality of the controller.

We further found that in all benchmark sets (except one,

SYN17W), the impact on well-separation is positive.

Table VII compares satisfiability and well-separation be-

tween the original corpus specifications and their correspond-

ing core specifications. Each of the first four rows contains

the data for one of the sets of realizable specifications, and

the last row contains information about the entire corpus.

Column N shows the number of specifications in the set. The

columns under #Sat show the number of satisfiable original

specifications and satisfiable core specifications under Orig.
and Core resp. The columns under #WS show the number

of well-separated original specifications under Orig., the

number of specifications improved from non-well-separated

to well-separated under I, and the number of specifications

damaged by becoming non-well-separated under D.

H. Threats to Validity

We discuss internal and external threats to the validity of

our results. One internal threat is that symbolic computations

are not trivial and our implementation of DDMin may contain

bugs. To mitigate this threat, we performed a thorough vali-

dation using all specifications available to us, see Sect. VI-B.

Another internal threat relates to the variance in running times

due to JVM garbage collection and BDD dynamic-reordering.

To mitigate this threat, although the algorithms we deal with

are deterministic, we performed 10 runs of each experiment

and report average values, see Sect. VI-B.
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Table IV
COMPUTATION TIMES OF REALIZABILITY AND SYNTHESIS (CORE VS. ORIG. RATIO)

Spec Set Realizability Checks Synthesis Computation JIT Synthesis Computation
0.1-1s 1-10s 10-100s ≥ 100s 0.1-1s 1-10s 10-100s ≥ 100s 0.1-1s 1-10s 10-100s ≥ 100s

SYN15W 0.35 - - - 0.68 - - - 0.92 - - -
SYN17W 8.1E-3 0.06 - - 0.61 0.20 0.02 - 0.15 0.01 - -
SYN19W 0.02 0.21 - 0.20 0.78 0.95 0.79 0.14 0.83 0.44 - 0.38
SYN20W 0.01 0.49 - - 0.43 0.80 0.76 0.63 0.20 0.10 - -

Table V
COMPUTATION TIMES OF ADDITIONAL ANALYSES (CORE VS. ORIG. RATIO)

Spec Set Well-Separation Satisfiability Vacuities
0.1-1s 1-10s 10-100s ≥ 100s 0.1-1s 1-10s 10-100s ≥ 100s 0.1-1s 1-10s 10-100s ≥ 100s

SYN15W - - - - - - - - - - - -
SYN17W 0.03 2.2E-3 - - 0.18 0.02 - - 0.10 0.04 1.8E-3 -
SYN19W 6.9E-3 2.3E-3 1.1E-3 - 0.98 1.10 0.48 0.10 - 0.89 0.82 0.09
SYN20W 5.6E-3 4.2E-4 9.9E-5 - 0.67 0.90 0.28 - 0.25 - 0.28 -

Note that an assumptions core is a local minimum and

thus may not be unique. As an example, the specification

that combines Lsts. 1-3 from Sect. II has two assumptions

cores. First, the assumptions at lines 36, 48, 52, and 56,

and second, the assumptions at lines 36, 56, and line 3 from

Lst. 3. Thus, another internal threat is that the results may vary

depending on the computed core. To address this concern, we

computed all assumption cores in our corpus (using a variant

of Punch [32], applied to subsets of assumptions), and found

that in our case, 77% of all SYNTECH specifications (192 out

of 249) have a single core. This means that in most cases the

computed assumptions core is independent of the choice and

implementation of the minimization algorithm.

An external threat relates to the possible generalization

of the results. We have based the evaluation on a corpus

consisting of the SYNTECH specifications and parametric

specifications from the literature, see Sect. VI-A. We do not

know to what extent these sets of specifications are representa-

tive of specifications engineers would write in practice. Still,

we believe that the use of many specifications from several

different sources and of different nature, partly mitigates the

generalization threat.

VII. RELATED WORK

The existence of unnecessary assumptions. Unnecessary

assumptions are one example of the more general well-known

phenomenon of redundancies in requirements (see, e.g., [45]).

However, our work is the first to detect these in formal

specifications for synthesis and to measure the impact of

removing them.

Table VI
COMPUTATION TIMES OF ANALYSES (CORE VS. ORIG. RATIO)

Real. Synt. WS Sat. Vac.
AMBA 0.51 0.46 0.15 0.99 1.07
GENBUF 0.61 3.07 0.01 0.53 0.37
LIFT 0.19 0.16 0.03 0.02 8.8E-3

Table VII
IMPACT OF CORES OVER QUALITATIVE ASPECTS OF

SPECIFICATIONS: SATISFIABILITY AND WELL-SEPARATION

Spec Set N #Sat #WS
Orig. Core Orig. I D

SYN15R 61 53 61 22 9 1
SYN17R 113 108 113 84 15 20
SYN19R 18 18 18 17 1 0
SYN20R 57 57 57 47 3 0
Corpus 249 236 249 170 28 21

Detecting unnecessary assumptions. The detection of

assumptions that are unnecessary for realizability has been

suggested before. In [13], the authors define a notion of

minimally sufficient sets of assumptions. They also define

a notion of a helpful assumption, one whose addition or

removal makes a difference in the realizability of some subset

of guarantees. They evaluate the performance of computing

a minimally sufficient set of assumptions on several AMBA
and GENBUF specifications. Unlike our work, they compute

redundant assumptions one by one (LinMin), not by a divide

and conquer algorithm like DDMin. As we mention later in this

section, in supporting materials [43] we compare LinMin and

DDMin on our corpus and show that the latter is almost always

significantly faster than the former. Moreover, the work in [13]

does not examine the potential impact of removing redundant

assumptions.

In [16], the authors define a notion of superfluous assump-

tions, ones whose removal does not change the realizability

of the specification, does not add winning states to the sys-

tem, and does not change the reactive distance from some

position to some goal. They suggest to check for superfluous

assumptions one by one. They do not report empirical results.

Unlike our work, this work does not examine the prevalence of

unnecessary assumptions, does not compute a realizable core,

and does not examine the potential impact of removing them.

Assumptions that are unnecessary for realizability have

also been considered in the context of repairing unrealizable

specifications by assumption inference. Maoz et al. [30] com-
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pute a repair core, which is a locally minimal subset of the

inferred repair assumptions that suffices for repair. Cavezza

et al. [12] repair an unrealizable specification by adding a

minimal set of assumptions that guarantee realizability. While

the former applies the minimization after a candidate repair

was computed, the latter applies it as part of the computation

of a candidate repair. Unlike both of these works, our work

takes as input an originally realizable specification, not an

unrealizable one that requires repair. Moreover, we minimize

the complete set of assumptions written by the specifier, not

a subset consisting of inferred assumptions.

Minimization algorithms. Different set minimization algo-

rithms have been considered in the literature, including delta

debugging [47] (DDMin), QuickXplain [20], [34], which

is an incremental recursive divide and conquer algorithm, and

linear minimization (LinMin), which goes over elements of

the input set one by one, and removes an element iff the

criterion holds for the set without the element. All three

algorithms find a core given a monotonic criterion. Our work

does not present a new minimization algorithm. We chose to

use DDMin with the performance heuristics described in [18],

after we empirically compared the performance of these three

algorithms, with the memoization described in [32], on our

corpus. The comparison showed that LinMin is slower than

all other algorithms on average on most categories. It also

showed that DDMin is either competitive or significantly

better compared to the others. The comparison also considers

a domain-specific algorithm named IncCore, inspired by

QuickCore [32]. The details of the comparison appear

in [43].

Additional quality aspects. The existence of assumptions

that are unnecessary for realizability, or ones that are not weak-

est [11], may be viewed as a form of inherent vacuity [19]. Yet,

previous work on inherent vacuity in specifications for reactive

synthesis [31] considered only the semantic equivalence case

of inherent vacuity, not the weakening/strengthening case.

Assumptions that are vacuous according to [31] are a special

case of the ones we consider here. Thus we are able to detect

more of them.

VIII. CONCLUSION AND FUTURE WORK

We introduced the notion of core specifications, ones that

include no assumptions that are unnecessary for realizability.

We then showed how to compute an assumption core, a subset

of assumptions that are necessary for realizability, and thus

transform any specification into a corresponding core spec-

ification. Synthesis from core specifications results in more

general controllers, i.e., ones that will satisfy their guarantees

not only in all environments that satisfy the assumptions listed

in the original specification, but in many more environments.

We implemented our work and evaluated it on benchmarks

from the literature. The evaluation shows that almost all spec-

ifications in well-known benchmark specification sets include

at least one unnecessary assumption, that in more than half of

these at least half of the assumptions are unnecessary, and that

in almost all cases the fully-automated removal of unnecessary

assumptions pays off in total synthesis time and induces more

general controllers whose reachable state space is larger but

whose representation more memory efficient.

Our work has important technical and methodological
implications for the builders of synthesizers and for the
engineers who use them. First, synthesizer builders should

consider automatic marking of unnecessary assumptions, as

warnings, like the ones we have added to Spectra, so that

engineers become aware of them and can decide whether to

keep them, change them, or remove them. Second, while in

realizability checking one should use the complete, original

specification as written by the engineer, when synthesizing a

controller for actual deployment in production, users should

be advised to compute a realizable core and use the core

specification for synthesis. Finally, engineers who write spec-

ifications for synthesis should be aware that the existence of

unnecessary assumptions in their specifications, even if these

indeed hold in the relevant environment, may negatively affect

the performance of the synthesizer and the quality of the

synthesized controllers.
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