
Anti-Patterns (Smells) in Temporal Specifications

Dor Ma’ayan
Tel Aviv University

Israel

Shahar Maoz
Tel Aviv University

Israel

Jan Oliver Ringert
Bauhaus University Weimar

Germany

Abstract—Temporal specifications are essential inputs for
verification and synthesis. Despite their importance, temporal
specifications are challenging to write, which might limit their use
by software engineers. To this day, almost no quality attributes
of temporal specifications have been defined and investigated.
Our work takes a first step toward exploring and improving the
quality of temporal specifications by proposing a preliminary
catalog of anti-patterns (a.k.a. smells). We base the catalog on
our experience in developing and teaching temporal specifications
for verification and synthesis. In addition, we examined publicly
available specification repositories and relevant literature. Finally,
we outline our future plans for a better understanding of
what constitutes high-quality temporal specifications and the
development of tools that will help engineers write them.

I. INTRODUCTION

Temporal specifications are essential inputs for verification

and synthesis. They serve as the primary medium to formally

describe the expected behavior of a system. In practice,

however, developing and using specifications is considered

a challenging task reserved only for experts. One potential

reason for the very limited adoption of temporal specifications

outside academia and industry niches is the lack of knowledge

on how to write high-quality specifications, the lack of tools

that help in writing high-quality specifications, and fundamen-

tally, to start with, an answer to the question: what constitutes
a high-quality temporal specification?

One may consider two perspectives on the quality of

specifications: (1) External quality, i.e., to what extent does

a specification correctly or completely express the system’s

requirements or the engineer’s intent? and (2) Internal quality
of a specification that views the specification as a stand-alone

document and looks for means to measure its readability, error-

proneness, and maintainability. While the first perspective has

been investigated, to some extent, in works that deal with the

translation of requirements into formal specifications, e.g. [4],

[20], [35], to our knowledge, no works have investigated the

internal quality of temporal specifications. This is the context

of our present and planned work.

Anti-patterns, a.k.a. smells, are issues that impair software

quality. They have been extensively studied in code [17], [49],

[51], as well as in tests [18], [50], in UML design [34], in

continuous integration [12], [52], and in the context of energy

consumption of Android applications [22], to give just a few

examples from the relevant literature, see, e.g., a survey by

Sharma and Spinellis [45].

In this work, we present a preliminary catalog of 9 anti-
patterns in temporal specifications. We base the catalog on

our experience in developing and teaching temporal specifica-

tions for use in verification and synthesis, examining publicly

available specification repositories, and reading relevant liter-

ature. We believe a catalog of anti-patterns will serve as a

starting point for the quality assessment of temporal specifi-

cations. Eventually, we expect this work to make specification

developers aware of quality issues in their temporal specifi-

cations and lead to the development of better specification

languages and supporting tools. Following the presentation of

the anti-patterns catalog, we discuss our future research plan

to fully evaluate and shape the catalog, develop automatic

detection tools for the anti-patterns, and empirically explore

the relationship between the anti-patterns and other potential

quality measurements.

This work is a step in our broader vision toward better

understanding of what constitutes high-quality temporal speci-

fications and the development of tools that will help engineers

write them.

II. BACKGROUND AND RELATED WORKS

A. Temporal Specifications

Temporal specifications use temporal logics [39] such as

LTL and CTL, and fragments and variants of these, to express

the expected behavior of systems. They are used as inputs

for model checking, synthesis, test generation, and runtime

verification tools, see e.g., [9], [30], [43], [47], [48].

We chose to focus our work on temporal specifications, as

they are common to many synthesis and verification tools.

In the future, one may consider looking for anti-patterns

and quality attributes in other kinds of specifications, e.g.,

relational specifications, such as Alloy [24]. To date, most

work on Alloy specifications has dealt with their satisfiability

and repair, see, e.g., [8], not with internal quality aspects such

as readability and maintainability that are related to the way

they are written.

B. Research on Anti-Patterns

Code anti-patterns are quality issues in source code that can

be refactored to improve the overall quality of the code [17].

Since their original introduction, anti-patterns have been ex-

tended and adapted as an indicator of deeper design problems

affecting software quality in many subdomains of software

systems [45]. These subdomains include tests [18], [50], UML

design [34], and continuous integration [12], [52].

13

2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)

DOI 10.1109/ICSE-NIER58687.2023.00009

TABLE I: Classification of Anti-Patterns in Two Dimensions: Scope and Impact

Scope

Icon Name Description

Single property Defined in a single temporal property

Entire specification Defined in the entire specification

Impact

Icon Name Description

Comprehension Lead to a less readable specification

Maintainability
Lead to specifications that are harder
to change and maintain

Error-proneness May hint at hidden errors in the specification

Past studies identified and explored some factors that influ-

ence the occurrence of code anti-patterns [45]. These causes

include, for example, lack of skill or awareness, language

constraints, and knowledge gaps.

The literature on anti-patterns includes works that define a

set of anti-patterns [17], [50], works that discuss methodolo-

gies to detect and refactor (i.e., fix) anti-patterns [37], [38],

[41], works that explore the relationship between anti-patterns

and other quality measurements [6], [29], [42], [46], and works

that explore the perception of the concept of anti-patterns

by programmers [18], [51]. To the best of our knowledge,

despite the extensive work on anti-patterns in software and the

beneficial outcomes such works brought to the overall software

development cycle, no work explored possible anti-patterns in

temporal specifications.

C. Comprehension of Temporal Specifications

There are few works on the difficulties in understanding

temporal specifications and on misconceptions involved in

using them. Greenman et al. [19] identified a set of misconcep-

tions of LTL users. Other works [10], [11] empirically checked

the comprehension of temporal specifications, in particular

w.r.t. the use of patterns [13]. These works, however, do not

propose or discuss concrete anti-patterns. Moreover, in our

present work, we look for anti-patterns whose impact is not

limited to the comprehension of temporal specifications but

also consider maintainability and error-proneness.

III. PRELIMINARY CATALOG OF ANTI-PATTERNS

The following preliminary catalog of anti-patterns is based

on our experience developing and teaching temporal spec-

ifications, including reviewing many temporal specifications

written by students and experts. In particular, to develop the

following catalog of anti-patterns, we first studied relevant

literature on temporal specification language constructs and

analyses. We then inspected specifications in corpora such as

the CRV [5] and MCC [27] competitions, many NuSMV [9]

and Spin [21] specifications available on GitHub, the SYNT-

COMP benchmark [25], and the SYNTECH collection [30].

Finally, some of the suggested anti-patterns are inspired by

relevant literature on well-known anti-patterns in code.

We classify the anti-patterns in the catalog in two dimen-

sions: the scope in which the anti-pattern is defined and the

nature of the impact it may have. Tbl. I presents the definitions.

For each anti-pattern, we explain the rationale behind it, define

it, and describe its scope and impact. We present the anti-

patterns in no particular order.

A. Overusing Specification Patterns

Scope: Impact:
Rationale. Specification patterns such as the Dwyer et al.

patterns [13] and the Menghi et al. robotic mission pat-

terns [33] were designed to hide the complexity of tempo-

ral specifications. However, overusing patterns may create

specifications that are (1) too convoluted and (2) hide

too much information from the developer, which may

make specification maintenance and debugging harder

and lead to unexpected behaviors. For example, consider

the following instance of the response pattern to express

that ready holds infinitely often:

S_responds_to_P_globally(ready, true)

Instead of using a specification pattern this could have

been expressed by a shorter, equivalent LTL formula:

GF(ready) (1)

Definition. Using temporal specification patterns in places

where they could be replaced with a simple temporal

logic formula.

B. Misusing Specification Patterns

Scope: Impact:
Rationale. While specification patterns such as the Dwyer et

al. patterns [13] were shown to be easier to understand

compared to pure LTL [11], studies show that pattern-

based properties are still hard to understand by novice

developers [10]. For example, in one of our classes, where

students used Spectra [30] to write specifications for syn-

thesis, we encountered participants using the following

pattern instance:

P_becomes_true_between_Q_and_R(atHome,
atAnyLocation, atAnyLocation)

At first sight, it seems like the developer wanted to state

that the robot should visit the home point between any

two visits to other locations. However, since the scopes

of the patterns are closed to the left and open to the right,

and she passed the same argument twice, this statement is

trivially true, likely not expressing the desired meaning.

Definition. Using temporal specification patterns in ways not

intended by their original developers.

14

C. Failure to Use Past Temporal Operators When Appropriate

Scope: Impact:
Rational Past temporal operators (PastLTL) are supported in

several model-checking, synthesis, and runtime verifica-

tion tools, and have been proven to be more succinct

compared to standard future temporal operators in many

cases [32]. For example, while the following expression

of a property using the standard future temporal logic

operators might be confusing and, therefore, error-prone

¬((¬request) U (grant ∧ ¬request)) (2)

describing the same property with past temporal operators

leads to a shorter, more elegant formula:

G(grant =⇒ F−1 request) (3)

Therefore, not using past temporal operators when appro-

priate may lead to confusing formulas, which are error-

prone and harder to maintain. One reason to failing to use

past operators may be engineers’ unawareness of these

language constructs or lack of knowledge about their

precise semantics.

Definition Using only future temporal operators when using

past temporal operators will lead to a shorter and more

intuitive specification.

D. Boolean Formulas Misuse

Scope: Impact:
Rationale. Boolean expressions play a significant role in

temporal formulas. There is evidence in the literature that

Boolean expressions written in complex form (for exam-

ple, using double negation) [1] are harder to understand

and maintain. For example, the following property from

a NuSMV [9] specification available on GitHub

LTLSPEC G ! (northLight!=off & eastLight!=off)

could be simplified by De Morgan’s laws to

LTLSPEC G (northLight=off | eastLight=off)

Complex logical Boolean expressions may also be more

error-prone due to mistakes made by their developers.

Definition. Writing Boolean expressions in a nontrivial form,

for example, using double negation.

E. Clones: Duplication of Expressions

Scope: Impact:
Rationale. Fowler [17] suggested that code duplication, or

cloning, is one of the major indicators of poor code main-

tainability. Much research has empirically evaluated the

relation between clones and code quality and examined

means to detect them, e.g., [26], [40], [44]. Similarly,

duplicated temporal expressions may also appear in spec-

ifications. For example, consider the following1 NuSMV

specification, which describes the behavior of the inner

1https://github.com/Ackuq/dd2460-nusmv-advanced/blob/
b04e483311145c96ae4299c9ca9f770c8d497069/ship3.3.smv#L268

and outer doors of a ship, which share many identical

behaviors.

-- If the door opens (transitions from closed to
open), the button must resetart

LTLSPEC G (Y (inner_door.status = closed) &
inner_door.status = open -> airlock.
reset_inner)

LTLSPEC G (Y (outer_door.status = closed) &
outer_door.status = open -> airlock.
reset_outer)

Such duplication may make the specification harder to

maintain in case of changes, and also harder to com-

prehend. Clones may occur due to copy-paste action of

specification fragments and to unawareness or misuse of

language constructs that allow the reuse of expressions.

Therefore, if the specification language has a reuse mech-

anism that allows one to avoid such duplication, such as

defines (available, e.g., in NuSMV and in Spectra) and

parametric predicates (available, e.g., in Spectra), it is

better to use it than to write many clones of the same

expression. We have seen many such clones in many

specifications in the SYNTECH [30] benchmarks and in

many NuSMV specifications available on GitHub.

Definition. Temporal expressions or sub-expressions that ap-

pear multiple times in the specification.

F. Local Inherent Vacuity

Scope: Impact:
Rationale. Some expressions in the specification may be

trivially true or false [16], [31]. Such expressions may

make the specification unnecessary long and harder to

understand. They also hint at potential errors in the

specification or the understanding of the domain.

Definition. Expressions that are trivially true or false, regard-

less of the actual values of their variables.

G. Global Inherent Vacuity

Scope: Impact:
Rationale. Parts of the specification may not affect its seman-

tics [16], [31], e.g., if they are logically implied by other

properties in the specification. For example, consider the

following simple inherent vacuity:

LTLSPEC GF(safe)
LTLSPEC G(safe)

Here, the first statement is redundant since it is implied

by the second statement. Past studies have shown that

such inherent vacuities are very common in specifications

written by students and experts alike [31].

These redundant properties in the specification may make

it harder to understand and maintain. Moreover, they may

affect the performance of various analyses.

One potential reason for the existence of inherent

vacuities in specifications is the overlapping semantics

15

TABLE II: Potential Sources for a Corpus of Temporal Specifications

Name Type No. Files Comments

CRV [5] Runtime Verification various different specification formats
MCC [27] Model Checking >300,000 1617 model instances with >300,000 formulas (LTL, CTL, etc.)
NuSMV [9] specifications available on GitHub Model Checking >8,000 GitHub search: filename=*.smv text=LTLSPEC
Spin [21] specifications available on GitHub Model Checking >2,700 GitHub search: filename=*.pml text=ltl
SYNTCOMP [25] Synthesis >1,000 LTL (TLSF) specifications written by experts
SYNTECH [30] Synthesis >320 Spectra [30] specifications written by students

between some requirements in the specification. More-

over, inherent vacuities are difficult and computationally

expensive to detect, and other than Spectra [31], there are

no tools that support their automatic detection.

Definition. Fragments of the specification that are implied by

the rest of the specification and therefore have no effect

on its semantics.

H. Long Expressions

Scope: Impact:
Rationale. Temporal expressions that are too long may be

harder to comprehend and maintain. In such a case, one

may consider dividing the expression into several sub-

expressions, each representing individual and thus simpler

logical units of the more complex property.

Long and complex expressions are frequent, for example,

see the following statement taken from SYNTECH15:

G ((spec_state_return=S0 & ((!(
spec_prevBotMotReturn & ack_bot = MOVE)) |
((spec_prevBotMotReturn & ack_bot = SLEEP) &
(spec_prevBotMotReturn & ack_bot = MOVE)))
& next(spec_state_return=S0)) |

(spec_state_return=S0 & (!(spec_prevBotMotReturn
& ack_bot = SLEEP) & (spec_dropping &
onlybotmoves -> botMot = RETURN) & (
spec_prevBotMotReturn & ack_bot = MOVE)) &
next(spec_state_return=S1)) |

(spec_state_return=S0 & (!(spec_prevBotMotReturn
& ack_bot = SLEEP) & !(spec_dropping &
onlybotmoves -> botMot = RETURN) & (
spec_prevBotMotReturn & ack_bot = MOVE)) &
next(spec_state_return=S3)) |

(spec_state_return=S1 & ((spec_prevBotMotReturn &
ack_bot = SLEEP)) & next(spec_state_return=
S0)) |

(spec_state_return=S1 & (!(spec_prevBotMotReturn
& ack_bot = SLEEP) & (spec_dropping &
onlybotmoves -> botMot = RETURN)) & next(
spec_state_return=S1)) |

(spec_state_return=S1 & (!(spec_prevBotMotReturn
& ack_bot = SLEEP) & !(spec_dropping &
onlybotmoves -> botMot = RETURN)) & next(
spec_state_return=S3)) |

(spec_state_return=S2 & next(spec_state_return=S2
)) |

(spec_state_return=S3 & ((spec_prevBotMotReturn &
ack_bot = SLEEP)) & next(spec_state_return=
S2)) |

(spec_state_return=S3 & (!(spec_prevBotMotReturn
& ack_bot = SLEEP)) & next(spec_state_return
=S3)));

This long statement can potentially be split into many

shorter statements.

Definition Long temporal expressions that can be split into

several independent logical units.

I. Bad Naming

Scope: Impact:
Rationale. The use of names and their effect on comprehen-

sion has been studied in code, in particular names that

are too short, too long, or otherwise miscommunicating

or not reflecting the intended function. There is evidence

that bad names are correlated with other attributes of poor

code quality [3], [7], [15], [28]. Similarly, bad names of

variables in specifications may have a negative effect on

comprehension and maintenance.

Definition. Variable names that are too short, too long, or

otherwise not reflecting their correct function.

IV. FUTURE PLANS

We presented a preliminary catalog of anti-patterns in

temporal specifications. We expect this catalog to evolve as

our knowledge about the quality of temporal specifications

grows.

We now describe our future research plans for addressing

the goal of high-quality temporal specifications. The plan is

inspired by the large body of literature on code quality and

works on anti-patterns in different sub-domains of software

engineering.

Note that in the proposed plans below, we will consider to

analyze and potentially distinguish different target groups, e.g.,

formal methods experts, students, or representative software

engineers. While all are target users of temporal specifications,

they may have different needs, characteristics of use patterns,

and different comprehension cognitive processes.

A Qualitative Study with Experts. To evaluate the validity

of the anti-patterns catalog and enhance and refine it, we

plan to conduct a qualitative interview study in which

we will introduce experts to our preliminary catalog of

anti-patterns and ask for their feedback. Based on their

feedback and suggestions, we plan to refine the catalog.

Specification Corpus To explore the quality of temporal

specifications, it is essential to have a large and represen-

tative collection of specifications. Unlike studies on code,

which benefit from the millions of online repositories,

temporal specifications are not readily available. More-

over, those that are available, e.g., in collections such as

MCC [27], SYNTCOMP [25], and CRV [5], are mostly

benchmarks that experts created for the purpose of tool’s

performance evaluation, not for the purpose of writing

high-quality specifications. We plan to invest efforts in

curating a set that will serve as a baseline for future

16

studies on the quality of temporal specifications. Tbl. II

lists some potential sources for such a corpus.

Automatic Detection of Anti-Patterns Using the corpus we

will create, we plan to develop automatic methods to

detect anti-patterns. Automatic detection of anti-patterns

will have two use cases: (1) Providing specification devel-

opers with hints about the quality of their specifications

so they can consider fixing them, and (2) Extracting

statistics about the occurrences of different anti-patterns

in real-world specifications to assess their frequency and

overall impact. The automatic detection may be packaged

in a tool like SpotBugs2 or other code smell detection

tools [36], targeting temporal specifications rather than

code. Some anti-patterns may be specific for particular

use cases of temporal specifications (for example, anti-

patterns that are relevant to synthesis but not to model

checking or runtime verification).

Empirical Studies With the ability to detect anti-patterns

automatically, we plan to conduct a series of empirical

studies to examine the influence of the anti-patterns on

different aspects (e.g., comprehension, maintainability),

the relationship between the occurrences of different anti-

patterns, the question of whether results on code anti-

patterns transfer to temporal specification anti-patterns,

and the question of the relationship between anti-patterns

and the correctness of specifications. This step will eval-

uate the catalog and allow us to refine it.

Refactoring After gaining more insights into the nature of

different anti-patterns and refining the catalog, we plan to

develop refactoring techniques to deal with the different

anti-patterns, for example, simplify temporal expression

(to remove long expressions), extract common expression

(to remove duplicates), etc. Similarly to the case of code

refactoring, some temporal anti-patterns may be hard to

automatically or semi-automatically refactor.

Specification Language Evaluation and Future Design
The different anti-patterns can be used by us and others

to evaluate existing temporal specification languages,

e.g., PSL [14], [23] or ForSpec [2]. These languages

were created with the intention to be more suitable for

practitioners, but we are not aware of studies that actually

examined how well they meet this goal. The anti-patterns

may guide future language design. We specifically plan

to use the anti-patterns in future tool and language

development design decisions of Spectra [30], e.g., to

decide whether and how to add support for various

language constructs if some are prone to misuse.

Specification Languages Documentation and Teaching
Including examples of anti-patterns and means to avoid

them in the documentation of specification languages

may help users write higher quality specifications.

Similarly, anti-patterns may be used as a pedagogical

tool for effective teaching of specification languages.

2https://spotbugs.github.io/

ACKNOWLEDGEMENTS

This project has received funding from the European Re-

search Council (ERC) under the European Union’s Hori-

zon Europe research and innovation programme (grant No

101069165, SYNTACT).

REFERENCES

[1] S. Ajami, Y. Woodbridge, and D. G. Feitelson. Syntax, predicates,
idioms - what really affects code complexity? Empir. Softw. Eng.,
24(1):287–328, 2019.

[2] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza,
A. Landver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi,
and Y. Zbar. The ForSpec Temporal Logic: A New Temporal Property-
Specification Language. In J. Katoen and P. Stevens, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 8th Inter-
national Conference, TACAS 2002, Held as Part of the Joint European
Conference on Theory and Practice of Software, ETAPS 2002, Grenoble,
France, April 8-12, 2002, Proceedings, volume 2280 of Lecture Notes
in Computer Science, pages 296–211. Springer, 2002.

[3] V. Arnaoudova, M. D. Penta, and G. Antoniol. Linguistic antipatterns:
what they are and how developers perceive them. Empir. Softw. Eng.,
21(1):104–158, 2016.

[4] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang. Aligning
Qualitative, Real-Time, and Probabilistic Property Specification Patterns
Using a Structured English Grammar. IEEE Trans. Software Eng.,
41(7):620–638, 2015.

[5] E. Bartocci, Y. Falcone, B. Bonakdarpour, C. Colombo, N. Decker,
K. Havelund, Y. Joshi, F. Klaedtke, R. Milewicz, G. Reger, G. Rosu,
J. Signoles, D. Thoma, E. Zalinescu, and Y. Zhang. First international
competition on runtime verification: rules, benchmarks, tools, and final
results of CRV 2014. Int. J. Softw. Tools Technol. Transf., 21(1):31–70,
2019.

[6] G. Bavota, A. Qusef, R. Oliveto, A. D. Lucia, and D. W. Binkley. Are
test smells really harmful? An empirical study. Empir. Softw. Eng.,
20(4):1052–1094, 2015.

[7] D. W. Binkley, M. Davis, D. J. Lawrie, and C. Morrell. To camelcase
or under score. In The 17th IEEE Int. Conference on Program
Comprehension, ICPC 2009, Vancouver, British Columbia, Canada, May
17-19, 2009, pages 158–167. IEEE Computer Society, 2009.

[8] S. G. Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre,
and M. F. Frias. Bounded Exhaustive Search of Alloy Specification
Repairs. In 43rd IEEE/ACM Int. Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021, pages 1135–1147. IEEE,
2021.

[9] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. In Computer Aided Verification,
14th Int. Conference, CAV 2002,Copenhagen, Denmark, July 27-31,
2002, Proc., volume 2404 of LNCS, pages 359–364. Springer, 2002.

[10] C. Czepa and U. Zdun. How understandable are pattern-based behavioral
constraints for novice software designers? ACM Trans. Softw. Eng.
Methodol., 28(2):11:1–11:38, 2019.

[11] C. Czepa and U. Zdun. On the understandability of temporal properties
formalized in linear temporal logic, property specification patterns and
event processing language. IEEE Trans. Software Eng., 46(1):100–112,
2020.

[12] P. M. Duvall and M. Olson. Continuous delivery: Patterns and antipat-
terns in the software life cycle. DZone refcard, 145, 2011.

[13] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In Proc. of the 1999 Int.
Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA,
May 16-22, 1999, pages 411–420. ACM, 1999.

[14] C. Eisner and D. Fisman. A Practical Introduction to PSL. Series on
Integrated Circuits and Systems. Springer, 2006.

[15] D. G. Feitelson, A. Mizrahi, N. Noy, A. B. Shabat, O. Eliyahu, and
R. Sheffer. How developers choose names. IEEE Trans. Software Eng.,
48(2):37–52, 2022.

[16] D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and M. Y. Vardi. A
framework for inherent vacuity. In HVC, volume 5394 of LNCS, pages
7–22. Springer, 2008.

[17] M. Fowler. Refactoring - Improving the Design of Existing Code.
Addison Wesley object technology series. Addison-Wesley, 1999.

17

[18] V. Garousi and B. Küçük. Smells in software test code: A survey of
knowledge in industry and academia. J. Syst. Softw., 138:52–81, 2018.

[19] B. Greenman, S. Saarinen, T. Nelson, and S. Krishnamurthi. Little
tricky logic: Misconceptions in the understanding of LTL, 2022. Talk at
VardiFest: A workshop in honor of Moshe Y. Vardi, part of FLoC’22.

[20] J. He, E. Bartocci, D. Nickovic, H. Isakovic, and R. Grosu. DeepSTL
- From English Requirements to Signal Temporal Logic. In 44th
IEEE/ACM 44th Int. Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022, pages 610–622. ACM, 2022.

[21] G. J. Holzmann. The SPIN Model Checker - primer and reference
manual. Addison-Wesley, 2004.

[22] E. Iannone, F. Pecorelli, D. D. Nucci, F. Palomba, and A. D. Lucia.
Refactoring Android-specific Energy Smells: A Plugin for Android
Studio. In ICPC ’20: 28th Int. Conference on Program Comprehension,
Seoul, Republic of Korea, July 13-15, 2020, pages 451–455. ACM, 2020.

[23] IEEE Standards. IEC 62531:2012(E) (IEEE Std 1850-2010): Standard
for Property Specification Language (PSL). IEC 62531:2012(E) (IEEE
Std 1850-2010), pages 1–184, June 2012.

[24] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, 2002.

[25] S. Jacobs, N. Basset, R. Bloem, R. Brenguier, M. Colange, P. Fay-
monville, B. Finkbeiner, A. Khalimov, F. Klein, T. Michaud, G. A.
Pérez, J. Raskin, O. Sankur, and L. Tentrup. The 4th reactive synthesis
competition (SYNTCOMP 2017): Benchmarks, participants & results.
In Proc. Sixth Workshop on Synthesis, SYNT@CAV 2017, Heidelberg,
Germany, 22nd July 2017, volume 260 of EPTCS, pages 116–143, 2017.

[26] E. Jürgens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones
matter? In 31st Int. Conference on Software Engineering, ICSE 2009,
May 16-24, 2009, Vancouver, Canada, Proc., pages 485–495. IEEE,
2009.

[27] F. Kordon, P. Bouvier, H. Garavel, F. Hulin-Hubard, N. Amat., E. Am-
parore, B. Berthomieu, D. Donatelli, S. Dal Zilio, P. Jensen, L. Jezequel,
C. He, S. Li, E. Paviot-Adet, J. Srba, and Y. Thierry-Mieg. Com-
plete Results for the 2022 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2022/results.php, June 2022.

[28] D. J. Lawrie, C. Morrell, H. Feild, and D. W. Binkley. What’s in
a name? A study of identifiers. In 14th Int. Conference on Program
Comprehension (ICPC 2006), 14-16 June 2006, Athens, Greece, pages
3–12. IEEE Computer Society, 2006.

[29] W. Li and R. Shatnawi. An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution. J.
Syst. Softw., 80(7):1120–1128, 2007.

[30] S. Maoz and J. O. Ringert. Spectra: a specification language for reactive
systems. Softw. Syst. Model., 20(5):1553–1586, 2021.

[31] S. Maoz and R. Shalom. Inherent vacuity for GR(1) specifications.
In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, pages 99–110. ACM, 2020.

[32] N. Markey. Temporal logic with past is exponentially more succinct.
Bull. EATCS, 79:122–128, 2003.

[33] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger.
Specification patterns for robotic missions. IEEE Trans. Software Eng.,
47(10):2208–2224, 2021.

[34] P. Mohagheghi, V. Dehlen, and T. Neple. Definitions and approaches
to model quality in model-based software development - A review of
literature. Inf. Softw. Technol., 51(12):1646–1669, 2009.

[35] R. Nelken and N. Francez. Automatic translation of natural language
system specifications. In CAV, volume 1102 of LNCS, pages 360–371.
Springer, 1996.

[36] T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna. On the
evaluation of code smells and detection tools. J. Softw. Eng. Res. Dev.,
5:7, 2017.

[37] F. Palomba, A. Panichella, A. D. Lucia, R. Oliveto, and A. Zaidman.
A textual-based technique for smell detection. In 24th IEEE Int.
Conference on Program Comprehension, ICPC 2016, Austin, TX, USA,
May 16-17, 2016, pages 1–10. IEEE Computer Society, 2016.

[38] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and
F. Palomba. tsDetect: an open source test smells detection tool. In
ESEC/FSE, pages 1650–1654. ACM, 2020.

[39] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977, pages 46–57. IEEE Computer Society,
1977.

[40] F. Rahman, C. Bird, and P. T. Devanbu. Clones: what is that smell?
Empir. Softw. Eng., 17(4-5):503–530, 2012.

[41] S. Reichhart, T. Gı̂rba, and S. Ducasse. Rule-based assessment of test
quality. J. Object Technol., 6(9):231–251, 2007.

[42] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol. An empirical study
of code smells in javascript projects. In IEEE 24th Int. Conference on
Software Analysis, Evolution and Reengineering, SANER 2017, Klagen-
furt, Austria, February 20-24, 2017, pages 294–305. IEEE Computer
Society, 2017.

[43] C. Sánchez, G. Schneider, W. Ahrendt, E. Bartocci, D. Bianculli,
C. Colombo, Y. Falcone, A. Francalanza, S. Krstic, J. M. Lourenço,
D. Nickovic, G. J. Pace, J. Rufino, J. Signoles, D. Traytel, and A. Weiss.
A survey of challenges for runtime verification from advanced applica-
tion domains (beyond software). Formal Methods Syst. Des., 54(3):279–
335, 2019.

[44] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan,
and Y. Zou. Studying the impact of clones on software defects. In
17th Working Conference on Reverse Engineering, WCRE 2010, 13-16
October 2010, Beverly, MA, USA, pages 13–21. IEEE Computer Society,
2010.

[45] T. Sharma and D. Spinellis. A survey on software smells. J. Syst. Softw.,
138:158–173, 2018.

[46] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli.
On the relation of test smells to software code quality. In 2018 IEEE
Int. Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018, pages 1–12. IEEE Computer
Society, 2018.

[47] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: towards flexible verification
under fairness. In Computer Aided Verification, 21st Int. Conference,
CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proc., volume
5643 of LNCS, pages 709–714. Springer, 2009.

[48] L. Tan, O. Sokolsky, and I. Lee. Specification-based testing with
linear temporal logic. In Proc. of the 2004 IEEE Int. Conference on
Information Reuse and Integration, IRI - 2004, November 8-10, 2004,
Las Vegas Hilton, Las Vegas, NV, USA, pages 493–498. IEEE Systems,
Man, and Cybernetics Society, 2004.

[49] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. D. Lucia,
and D. Poshyvanyk. When and why your code starts to smell bad (and
whether the smells go away). IEEE Trans. Software Eng., 43(11):1063–
1088, 2017.

[50] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok. Refac-
toring test code. In XP, pages 92–95. Citeseer, 2001.

[51] A. F. Yamashita and L. Moonen. Do developers care about code
smells? An exploratory survey. In 20th Working Conference on Reverse
Engineering, WCRE, pages 242–251. IEEE Computer Society, 2013.

[52] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora, H. C. Gall, and M. D.
Penta. An empirical characterization of bad practices in continuous
integration. Empir. Softw. Eng., 25(2):1095–1135, 2020.

18

