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Abstract—Recent works have considered the problem of log
differencing: given two or more system’s execution logs, output
a model of their differences. Log differencing has potential
applications in software evolution, testing, and security.

In this paper we present statistical log differencing, which
accounts for frequencies of behaviors found in the logs. We
present two algorithms, s2KDiff for differencing two logs, and
snKDiff, for differencing of many logs at once, both presenting
their results over a single inferred model. A unique aspect
of our algorithms is their use of statistical hypothesis testing:
we let the engineer control the sensitivity of the analysis by
setting the target distance between probabilities and the statistical
significance value, and report only (and all) the statistically
significant differences.

Our evaluation shows the effectiveness of our work in terms of
soundness, completeness, and performance. It also demonstrates
its effectiveness compared to previous work via a user-study and
its potential applications via a case study using real-world logs.

I. INTRODUCTION

Many works present different kinds of log analyses, which
take a system’s execution log as input and output a model, e.g.,
a state machine, a set of scenarios, or a set of invariants, which
provide data and insights about the behavior of the system
that produced the log (see, e.g., [4], [14], [22]). One kind of
log analysis is differencing, i.e., comparing logs in order to
infer and represent differences between two or more sets of
executions [3], [16]. Log differencing has various applications
in software engineering. One example application is in the
context of testing, e.g., comparing logs produced in the lab vs.
ones produced in the field, to improve test design and execution.
Another example application is in the context of security, e.g.,
comparing logs produced by a benign app with ones produced
by a similar app, suspected to be infected with malicious code.
Additional example applications include comprehension in the
context of software evolution.

In recent work [3], we have presented a log differencing
approach based on finite-state models and a notion of k-
differences, sequences of k events that appear in one log and
not the other. The work presented 2KDiff, an algorithm that
compares two logs, and nKDiff, an algorithm that compares
several logs at once. In both, the results are presented succinctly
on top of a single finite-state model, with relevant transitions
highlighted. An important strength of these two algorithms is
that they are sound and complete: all reported differences are
indeed differences, and all differences are reported.

One clear weakness of the 2KDiff and nKDiff algorithms,
however, is that they abstract away the frequencies of the

different behaviors in the logs. This results in two limitations
that affect usefulness. First, logs that include the same set of
behaviors albeit at very different frequencies are reported as
equivalent, with no differences found. Second, when several
differences are reported, all are presented as equally important.

In this paper we present statistical log differencing, which
accounts for frequencies of behaviors. Following our previous
work [3], we present s2KDiff, an algorithm to compare two
logs, and snKDiff, an algorithm to compare several logs at
once, both, importantly, with an additional statistical dimension
as follows.

Almost any two logs coming from different sets of runs of the
same system will not be identical in terms of the frequencies of
different behaviors. However, subtle differences in frequencies
may be meaningless. Moreover, large differences in frequencies
that are based only on a small set of traces may not actually
represent true differences. Where should the line be drawn
between interesting and uninteresting differences? Our answer
is based on statistical hypothesis testing. We let the engineer
control the sensitivity of the analysis by setting the target
distance between (transition) probabilities, e.g., d = 0.1, and
the statistical significance value, e.g., α = 0.05. We then report
only (and all) the statistically significant differences.

On top of the use of hypothesis testing, our approach
has three additional important features. First, we order the
differences by their statistical significance, and report them one
by one, on demand, in this order. This helps engineers focus on
the more significant differences first. Second, we compute the
differences locally, at the level of transition probabilities, but
report them within the larger context of the complete behavior,
represented by a (k-Tails [6] based) finite-state model (and,
when applicable, a concrete trace from the log). This helps
engineers conceptualize the behavior in question in its correct
context. Finally, when differencing many logs at once, we
present a single compact model that includes log indices over
the transitions. Logs that are statistically different are put into
different groups. This facilitates the multiple log comparison,
and allows engineers a quick identification of the differences
and the logs where they appear.

We have implemented our algorithms, validated the cor-
rectness of the implementation, and evaluated it against
logs generated from models taken from several sources. Our
evaluation shows that the statistical analysis is effective in terms
of providing the expected statistical guarantees and in terms of
its performance. We report a user-study of 20 participants



showing the effectiveness of the algorithms in identifying
behavioral differences in comparison to the baselines. We
further report on a case study, using real-world logs from the
work of Ghezzi et al. [15], which demonstrates one potential
use of statistical log differencing in practice.

II. EXAMPLE

We use a small and simple example to demonstrate the
ability of s2KDiff and snKDiff to reveal significant differences
of behaviors between 2 logs and n logs resp.

Consider the CVS Client model from Lo and Khoo [21]. The
model has 18 states and 28 transitions with an alphabet of 15
labels. For our example here, we manually created two copies
of this model, each annotated with different probabilities on
its transitions. We then generated 3 logs from each of the two
models, and refer to them as L1, . . . , L6. Each log includes
100,000 traces. The 6 generated logs simulate the behavior
of different clients. The engineer is interested to learn about
significant differences in behavior profiles between the 6 clients.

For a high-level view of the differences across the logs, the
engineer runs snKDiff. Figure 1a shows the output of snKDiff
on the 6 logs, running with k=1, a distance d=0.3, and a
significance value of α=0.05. It consists of a finite-state model
that captures all the behaviors found in the logs, and a csv file
with a summary of the comparisons between the logs.

In the output, each state is followed by a single event label
that appears in at least one of the logs. A transition between
two states si, sj , indicates that the two corresponding events
appeared consecutively in at least one trace in at least one of the
logs. For each transition, and for each log, snKDiff computes
the probability of taking the transition. Then, it conducts a set
of statistical tests and considers a transition to be differing if
there exists at least one pair of logs with a transition probability
difference above d and a significance of α.

Each such transition is highlighted and labeled with a group-
ing of the logs’ indices according to their transition probabilities.
Logs that belong to different groups are statistically different.
The transition also includes the probabilities of making the
transition in each of the log groups. The width of the transition
highlights the significance of the difference in comparison to
the other statistically significant differences. In Fig. 1a, for
example, the most significant differences are from state 10,
which is followed by the event rnm (rename), to states 3
and 4, which are followed by the strfl (storefile), logout
labels resp. Consider the transition from state 10 to state 4.
It shows that the probability of taking the transition, equals
87% in [L1, L2, L3], and 43% in [L4, L5, L6] resp.
The transition highlights the major probability difference in
obtaining the sequence of events 〈rnm, logout〉 between the
two groups of logs. This demonstrates the ability of snKDiff
to reveal significant differences between sets of logs.

The engineer can now continue to “drill down” to inspect
differences between two selected logs, using s2KDiff. Figure 1b
shows the output of s2KDiff on logs L1 and L4, again with k=1,
d = 0.3, and α = 0.05. The output of s2KDiff consists of two
finite-state models that capture all the behaviors found in L1

and L4 resp. We focus on the model of L1. For each transition,
s2KDiff computes the probability of taking the transition in
L1 and L4. Then, it conducts a statistical proportion test
and considers the transition to be differing iff its probability
difference is above d with a significance value of α.

The tool shows one differing transition at a time. For
each, it finds and highlights the trace in L1 that includes
it, and has the greatest probability difference in being accepted
by the two models. For example, Fig. 1b shows the model
of L1. It highlights the significant difference from state 8
to state 3, which corresponds to the 2-sequence 〈setfl
(setfiletype), strfl (storefile)〉 (red bold transition). The
transition label shows the transition probabilities 0.53 and 0.06
in each of the models, and the statistical test’s p-value. Finally,
s2KDiff highlights the accepting path of the selected trace
(dashed red lines): 〈init (initialize), login, setfl, strfl,
apndfl (appendfile), logout, dscon (disconnect)〉.

III. PRELIMINARIES

We present preliminary definitions that we use later in the
paper. We start with traces and finite-state machines, and
continue with an overview of the k-Tails algorithm. We recall
earlier log differencing algorithms and conclude with several
well-known statistical definitions that we use in our work.

A. Basic Definitions

A trace over an alphabet of events Σ is a finite word tr =
〈e1, e2, . . . , em〉 where ∀ei ∈ tr. ei ∈ Σ. For j ≥ 1 we use
tr(j) to denote the jth element in tr. We use |tr| to denote
the length of tr. For a positive integer k, a k-sequence is a
consecutive sequence of k (or less) events, denoted by seqk.
Σ≤k is the set of all k-sequences over Σ. A log L over an
alphabet Σ is a set of traces L = {tr1, . . . , trn}.

Definition 1 (Finite-State Machine (FSM)). A finite-state
machine (FSM) is a structure M = 〈Q,Qi, Qs,Σ, δ〉 where
Q is a set of states; Qi ⊆ Q is a set of initial states;
Qs ⊆ Q is a set of accepting states; Σ is an alphabet; and δ :
Q × Σ → P(Q) is a transition relation, where P(Q) is the
power set of the set of states Q.

We use subscript notation to refer to the elements of the
FSM. For example, δM refers to the transition relation of M .
Let M be an FSM over an alphabet Σ. We use L(M) ⊆ Σ∗

to denote the set of all words accepted by M .

Definition 2 (Probabilistic Finite-State Machine (PFSM) [35]).
A probabilistic finite-state machine is a tuple M =
〈Q,Σ, δ, I,F ,P〉 where Q, Σ, δ are defined similar to an
FSM, I/F : Q → [0, 1] are initial and terminal state
probabilities resp., and P : Q × Σ × Q → [0, 1] are
transition probabilities. Further, Σq∈Q I(q) = 1 ∧ ∀q ∈
Q,F(q) + Σa∈Σ,q′∈QP(q, a, q′) = 1.

This definition requires that the probability of starting at any
of the states in Q equals 100%, and that for any state q ∈ Q,
the probability of transitioning out or terminating equals 100%.
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(a) Output of snKDiff comparing logs L1, . . . , L6 (see Sect. II),
with k=1, d=0.3, α=0.05. Red transitions correspond to k-differences,
and are labeled with log indices, s.t. logs in different groups differ
statistically.
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(b) Output of s2KDiff comparing L1 and L4 (see Sect. II), with k=1,
d=0.3, α=0.05. Model for log L1. The red, bold transition highlights
a k-difference between the two logs. The dashed line corresponds to
a selected trace from L1 that includes the k-difference.

Fig. 1: Example outputs of snKDiff and s2KDiff

B. k-Tails

k-Tails [6] is a classic model inference algorithm, which has
been presented in several variants and implemented in many
works, e.g., [5], [10], [24], [25], [27]. k-Tails takes a log and
a parameter k as input. It starts by representing the log as an
FSM Mlin composed of linear sub-FSMs, one per trace, which
are joined by adding a single initial state qinit transitioning
to the start of each trace via a unique α label, and a single
terminal state qacc to which all traces transition to at the end
via a unique ω label. Notice that the language of Mlin equals
the set of traces in the log, given that each trace is encapsulated
by α and ω events. We refer to this version of the log as the
encapsulated version, denoted Len. k-Tails iteratively merges
states in the Mlin FSM: Two states are merged iff they are
k-equivalent, i.e., if their future of length k or less, is identical.
When no two remaining states are k-equivalent, the algorithm
terminates and outputs the resulting FSM, called a k-FSM.

More formally, we define a function future : QMlin
→

P(Σ≤k), mapping states in Mlin to k-sequences. The k-
equivalence relation induces a partition of the states of the initial
FSM Mlin into equivalence classes E = {e1, e2, . . . , em},
where each of the equivalence classes in E is uniquely
defined by its future sequences of length k or less: two states
s1, s2 ∈ ei iff future(s1) = future(s2). When lifted from
QMlin

to E, the function future becomes the injective function
id : E → P(Σ≤k). For all s ∈ ei, future(s) = id(ei).

Definition 3 (k-FSM). k-FSM, the FSM computed by k-
Tails for a log L and a positive integer k, is an FSM
ML = 〈Q,Qi, Qs,Σ, δ〉 where Q = E, the set of equivalence
classes defined above; Σ is the alphabet of the log L;
∀e ∈ E. a ∈ Σ. δ(e, a) =

⋃{
e′|∃s, s′ ∈ Mlin. s ∈ e ∧ s′ ∈

e′ ∧ s′ ∈ δMlin
(s, a)

}
; Qi = {qinit} is an artificial initial

state; and Qs = {qacc} is an artificial terminal state.

For a given k-FSM ML, generated by running k-Tails on



log L, we use L(ML) to denote the set of all words accepted
by ML. Among other properties, the correctness of the k-Tails
algorithm implies that ML may over approximate the set of
traces in L, but may not under approximate it, i.e., L ⊆ L(ML).
Consequently, every k-sequence included in any trace in L, is
part of at least one accepting word of ML. Additional useful
properties of the k-FSM are that all its states are reachable
from the initial state qinit, and that the accepting state qacc is
reachable from all states.

Further, since we use a variant of k-Tails that starts from
Mlin, and since each state in Mlin is followed by a single
future (apart from the dummy initial state), then all states in
the k-FSM are followed by single k-future. As a corollary, any
sequence of k events that appears in the log corresponds to a
unique k-FSM state, and any k+1 sequence that appears in the
log corresponds to a unique k-FSM transition.

C. Earlier Log Differencing Algorithms
We recall two existing techniques for log differencing,

2KDiff and nKDiff [3], which we extend in this work.

2KDiff. 2KDiff is a sound and complete extension of k-
Tails, for comparing two logs. Given a positive integer k,
2KDiff compares two logs by focusing on k-differences, i.e., k-
sequences that appear in one log but not the other, and present
them in the context of a k-FSM model using highlighted traces
from the logs. 2KDiff is sound and complete modulo the k-
Tails abstraction. Any k-sequence that appears in one log and
not the other is included in at least one highlighted trace on the
k-FSM of the respective log, and any such highlighted trace
contains at least one such k-sequence.

nKDiff. nKDiff is a sound and complete extension of k-Tails,
used for comparing many logs. Roughly, given a set of n logs,
{L1, . . . , Ln}, and a positive integer k, nKDiff computes the
k-DiffLFSM, a single FSM whose transitions are labeled with
subsets of log indices.

Definition 4 (k-DiffLFSM). For set of logs L = {L1, . . . , Ln}
and a positive integer k, a k-DiffLFSM ML1...Ln is an
LFSM 〈Q,Qi, Qs,Σ, I, δ, label〉 where: Q = E is the set
of equivalence classes of states from the k-FSM ML; I is
the set of indices {1 . . . n}; Σ is the union of the alphabets
of the logs L1 to Ln; ∀e, e′ ∈ E, a ∈ Σ: label(e, a, e′) =
{j|∃s, s′ ∈ M j

lin s.t. s′ ∈ δMj
lin

(s, a) ∧ futurej(s) =

id(e) ∧ futurej(s′) = id(e′)
}

; ∀e, e′ ∈ E, a ∈ Σ: e′ ∈
δ(e, a) iff label(e, a, e′) 6= ∅; Qi = {qinit} is an artificial
initial state; and Qs = {qacc} is an artificial terminal state.

nKDiff is sound and complete: its projection on any given
index results in the k-FSM of the log with that index
(soundness), and any behavior that appears in at least one
of the logs is included in it (completeness). The k-DiffLFSM
highlights all transitions that correspond to k-sequences that
only appear in some of the logs and not in others.

D. Statistical Definitions
We recall well-known statistical definitions that we use in

our work. We will use Bernoulli trials to model the transitions

in the inferred PFSM. We will use the Z-test to test whether the
difference between probabilities of corresponding transitions is
significant. We will use the χ2-test to compare corresponding
transitions on many logs, and test whether there exists at least
one pair of logs with different transition probabilities.

Definition 5 (Bernoulli trials [2]). Let x1, x2, . . . , xn be n
identical independent trials, where each trial has two possible
outcomes, referred to as ‘success’ and ‘failure’. Let p denote
the probability of a success in a single trial, and Y denote
the number of successes in n trials. Then, the probability
of an outcome, Y = y, follows the Binomial distribution:
P (y ∈ [0, . . . , n]) = n!

y!(n−y)!p
y(1− p)y .

Let X1 = {x1,1, . . . , x1,n1
}, and X2 = {x2,1, . . . , x2,n2

}
denote two samples of Bernoulli trials of size n1 and n2 with
m1 and m2 successes, and let p̂1 and p̂2 denote the sample
proportions of success (i.e., p̂i = mi

ni
). Testing whether the

difference between the proportions of two series of Bernoulli
trials is smaller than a constant can be done using hypothesis
testing. The Z-test is a popular test for this purpose.

Definition 6 (Z-test: Large-Sample Hypothesis Tests for Two
Population Proportions, Using Independent Samples [38]). The
Z-test is a hypothesis-testing procedure for comparing two
population proportions.

The null hypothesis of the test is H0 = p1 − p2 < d, and
the alternative hypothesis is Ha = p1 − p2 > d. The value of
the Z-test is Z = (p̂1 − p̂2 − d)/

√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2
.

Using the statistic above, we calculate the critical value
Zα. If the value of the statistics is larger than the critical
value, Z > Zα, then we reject the null hypothesis H0. The
probability that we correctly rejected the null hypothesis is
defined by pval = 1− Probability(z > Z), a.k.a p-value.

Definition 7 (Chi-Square Independence Test [38]). The Chi-
Square Independence Test (χ2-test) is used to decide whether
two variables, v1 and v2, are associated. The null hypothesis is
that the two variables are not associated. The χ2-test compares
the observed frequencies with the frequencies that we would
expect under the null hypothesis of non-association. The test
statistic is x =

∑
(O−E)
E , where O represents the observed

frequency and E the expected frequency. To compute the
likelihood of the statistics, i.e., P (χ2 > x), the χ2-test requires
the degree of freedom as input. Let R, C denote the number
of values that v1, v2 take, then the degree of freedom of χ2 is
defined as (R− 1)(C − 1).

IV. STATISTICAL LOG DIFFERENCING

We now present the main contributions of our work, s2KDiff,
for differencing two logs, and snKDiff, for differencing many
logs. We give formal definitions and examples, but leave the
proofs, complexity analysis, and additional remarks to [1].

A. From a k-FSM to a k-PFSM

Since s2KDiff and snKDiff identify differences between the
transition probabilities in the k-PFSM models of the logs, we
first explain how we compute these probabilities.



Let L and M denote a log and its corresponding k-FSM
model. We show how the probabilistic terms of the k-PFSM
(i.e., I, F , P , Def. 2) are defined.

Let tM = (e, σ, e′) denote a transition in M . Let V (e)
denote the number of visits made by traces in L to the state
eM , and by V (t) the number of times that transition t is
fired. Then, the maximum likelihood estimator (MLE) for the
transition probability of t is given by V (t)

V (e) [28]. We use the
MLE formula to infer P , the model transition probabilities.

Further, the k-FSM model has unique dedicated source and
terminal states (by construction), hence we define I = {Qi →
1, Q\Qi → 0}, and F = {Qs → 1, Q\Qs → 0}. These fully
specify the k-PFSM extension of the k-FSM.

Calculating states and transition counters.. Recall that each
state in the k-FSM is an equivalence class of states in Mlin,
and that each transition in Mlin corresponds to an event in
a trace. Therefore, the number of visits (of traces) of a state
e ∈ MQ is given by the number states (of Mlin) in e. The
number of visits (of traces) of a transition tM = (e, σ, e′), is
given by the number of states (of Mlin) in e that are followed
by states (of Mlin) in e′.

We compute the counters per state and per transition on
the fly as the states of Mlin are merged. Note that since each
state e ∈M is followed by a single k-sequence, a state (resp.
transition) counter shows the number of times that each unique
k-sequence (resp. (k+1)-sequence) appears in the log.

B. s2KDiff: Differencing Two Logs

At the heart of s2KDiff is a statistical engine that performs
a series of statistical tests to identify statistically significant
differences between the logs. To this end, we define the notion
of a (k, d)-difference between two logs. A (k, d)-difference is
a sequence of k+1 consecutive events that corresponds to a
transition in the k-PFSMs, and has probability difference of at
least d between the two models.

From here on, since each transition in the k-PSFM cor-
responds to a unique (k+1)-sequence, we use the terms
interchangeably. Let us formalize the above.

Definition 8 (Corresponding transitions). Let L1, L2 denote
two logs, and M1, M2 their corresponding k-PFSMs. Let tM1

,
tM2 denote two transitions in M1, M2 resp. We say that tM1

corresponds to tM2 iff they correspond to an identical (k+1)-
sequence.

Definition 9 ((k, d)-difference1). Let L1, L2 denote two logs,
and M1, M2 their corresponding k-PFSMs. Consider seqk+1,
a sequence of length k+1. Assume that seqk+1 appears in both
logs, and consider its corresponding transitions tM1

, tM2
in

M1, M2. Let p1, p2 denote the transition probabilities of tM1
,

tM2
resp. Given a distance d ∈ [0, 1], we say that seqk+1 is a

(k, d)-difference iff |p1 − p2| > d.

Due to the probabilistic nature of the transitions’ estimators,
s2KDiff performs a statistical test to determine if a (k, d)-

1Note that a transition in a k-PFSM corresponds to a sequence of k+1
events in the log (see Sect. III), still, we refer to these as (k, d)-differences.

difference is statistically significant. Let us first formulate the
probabilistic modeling of each transition.

Definition 10 (A transition as a Bernoulli trial). We model a
transition t = (e, σ, e′) in the k-PFSM as a Bernoulli trial,
B(p), where each time that e is visited it can fire t with
probability p.

Definition 11 (Trace visits as a series of Bernoulli trials). Let
t = (e, σ, e′) denote a transition in the k-PFSM. We model each
visit of a trace to e as a single trial in a series of Bernoulli
trials. We consider a trial as a ‘success’, if t is fired, and

‘failure’ otherwise.

To identify statistically significant (k, d)-differences, we
use the above modeling, and preform the hypothesis test
presented in Sect. III to compare the probabilities of corre-
sponding transitions between the two models. Specifically,
to compare corresponding transitions tM1

= (e1, σ, e
′
1) and

tM2
= (e2, σ, e

′
2), we obtain the source state and transition

counters: V (e1), V (e2), V (t1), V (t2) from the k-PFSM
models. To use the formula of the Z-test (Def. 6), we set
n1 = V (q1), n2 = V (q2), m1 = V (t1), m2 = V (t2), a
distance d ∈ [0, 1] and a significance value α ∈ [0, 1]. Let
p1, p2 denote the transition probabilities in the two models.
W.l.o.g. assume that p1 > p2. We execute the hypothesis test,
setting the null hypothesis of the test to H0 : p1 − p2 < d.
We consider a transition as a (k, d)-difference, iff, the null
hypothesis can be rejected, i.e., the test result has a p-value
below α.

We now provide a high-level description of the s2KDiff
algorithm. Given a positive integer k, a difference d ∈ [0, 1],
and a significance value α ∈ [0, 1], s2KDiff compares two
logs by focusing on (k, d)-differences, and presents all the
statistically significant ones in the context of the models, using
traces from the logs.

The s2KDiff Algorithm. The algorithm gets two logs, k , d,
and α as input. It computes the k-PFSM models of the two
logs, enriched with the number of times that each state and
transition are visited by the traces in the corresponding logs.

Then, it finds all pairs of corresponding transitions. For each
transition, the algorithm computes the number of source state
(n), and transition visits (m) in the two models and performs a
Z-test. If the pval of the test is less than α, i.e., the transition
corresponds the a (k, d)-difference, the algorithm stores it.

Then, for each (k, d)-difference, the algorithm searches for
an evidence trace. To this end, the algorithm iterates over
the traces in the logs, and selects the traces that include the
(k, d)-difference. For each trace, it computes the acceptance
probabilities in both models. After iterating all traces, it chooses
the one with the maximal absolute acceptance probability
difference.

Finally, it outputs the results of all statistical tests conducted
(in a csv format), along with a list of (k, d)-differences and
corresponding traces. It also outputs the graphs (in .dot format)
with a highlighting of the most significant (k, d)-difference
and its evidence trace.
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Fig. 2: The resulting models of s2KDiff when running with
L1 (top model), L2 (bottom model), k=1, d=0.1, α=0.05. The
logs are described in Example 1.

Example 1. We demonstrate the algorithm with a
simple example. Consider running s2KDiff with k=1,
d=0.1, α=0.05 on L1={tr1001 :〈a, b〉, tr1002 :〈a, c〉, tr1003 :〈a, d〉} and
L2={tr901 :〈a, d〉, tr502 :〈a, c〉, tr1503 :〈a, b〉, tr54:〈a, e〉}, where the su-
perscript shows the number of repetitions per trace. The
algorithm computes the models based on the encapsulated logs
and then finds all pairs corresponding transitions; e.g., it pairs
transitions tM1=(1, a, 2) and tM2=(1, a, 5), which correspond to
the k-sequence 〈a, b〉, and transitions tM1=tM2=(1, a, 4), which
correspond to the k-sequence 〈a, c〉. Then, it iterates over 9
tuples of corresponding transitions, and performs a Z-test per
transition. It classifies the two pairs above as (k, d)-differences.
For example, the first pair is highlighted in both models
(Fig. 2). The parameters of the Z-test are n1=VM1(1)=300,
m1=VM1(1, a, 2)=100, n2=VM2(1)=295, m2=VM2(1, a, 5)=150,
and the resulting pval=0.0297 is well below α. Hence, s2KDiff
considers it significant and highlights it. To find an evidence
trace, it iterates over all traces. The trace 〈a, b〉 includes the
k-sequence, and has an acceptance probability of 33.3%, 51%
in the models of L1, L2 resp. Since it is the only trace that
includes the k-sequence, it is selected and highlighted.

Note that the transition tM2=(1, a, 6), does not have a
corresponding transition in M1. However, since its source state
(k-future={a}) appears in both models, it can be tested with
n1=VM1(1)=300, m1=0, n2=VM2(1)=295, m2=VM2(1, a, 6)=5.
We omit the details of handling such cases.

It is important to note that similar to 2KDiff, s2KDiff is
sound and complete modulo the k-sequences abstraction.

Theorem 1 (s2KDiff Soundness and Completeness). Let k
be a positive integer and let L1, L2 be two logs compared

using s2KDiff with M1 and M2 their corresponding k-PFSM
models. Then, any trace highlighted by s2KDiff over M1 is a
trace from L1 ∪ L2 that includes at least one (k, d)-difference
with respect to L2. The same holds for M2. Further, every
(k, d)-difference between L1 and L2 is highlighted by at least
one accepted trace in M1 or M2.

C. snKDiff: Differencing Many Logs
We now present snKDiff, which extends nKDiff (see

Sect. III): given a set of n logs {L1, . . . , Ln}, and a positive in-
teger k, snKDiff computes a k-DiffLFSM model that maintains
the original soundness and completeness properties. Unlike
nKDiff, snKDiff accounts for the frequencies of k-sequences
in the logs, and only highlights transitions that have different
probabilities in the models of different logs. Importantly, only
(and all) statistically significant differences are highlighted.

Recall our definition of a (k, d)-difference (Def. 9). snKDiff
searches for (k, d)-differences by comparing the probabilities
of corresponding transitions in the k-PFSMs of the n different
logs (i.e., transitions with source and target states that map
to identical k-futures). To this end, it conducts a series of
statistical tests per transition.

A straightforward yet costly approach would solve snKDiff
by performing s2KDiff on all transitions on all pairs of logs.
This, however, will result in a O(n2) runs of s2KDiff per
transition. Our approach is different. We start by employing a
χ2-test and then apply s2KDiff only to the transitions for which
we have an indication of a possible difference. In our evaluation
we show that this heuristics for improved performance does not
increase the statistical error. This is expected because the χ2-
test is conservative, as it only checks for a possible difference,
without accounting for the difference size.

Specifically, in Sect. III we presented the χ2-test for testing if
two variables are associated. We established that each transition
can be viewed as a random variable of a Bernoulli trial. This is
our first variable for the test. For the second variable, we
consider all the realizations of a transition in all n logs.
Then, we model the log id as a variable that characterizes
the realizations. We conduct a χ2-test to test if the variable of
a transition is associated with the log id. If the two variables
are not associated, then the probability of firing the transition
is equal in all logs. If the variables are associated, there exists
at least one pair of logs with different transition probabilities.

The null hypothesis of the χ2-test is that the variables are
not associated. Thus, snKDiff conducts the test and rejects the
null hypothesis when a p-value smaller than α is obtained.

If the null hypothesis is rejected, snKDiff performs a set of
pairwise comparisons according to the Z-test (Def. 6). Finally,
snKDiff highlights a transition iff the null hypothesis of the
Z-tests is rejected for at least one pair of logs.

Example 2. To demonstrate the above, assume that snKDiff
compares a transition between k-PFSMs of three logs, i.e.,
ti=(ei, σ, e

′
i), for i ∈ {1, 2, 3}. Let us denote by V (ei) and

V (ti) the number of visits to the source state and transition
in the ith log resp. To conduct the χ2-test, we construct two
contingency tables, see Table I.



TABLE I: Observed and expected values

Observed log1 log2 log3
t fired V (t1) V (t2) V (t3)
t skipped V (e1)− V (t1) V (e2)− V (t2) V (e3)− V (t3)

Expected log1 log2 log3
t fired pV (q1) pV (q2) pV (t3)
t skipped (1− p)V (q1) (1− p)V (q2) (1− p)V (q3)

The first table holds the observed values (O). The second
holds the expected values (E) under the null hypothesis, which
assumes that firing t is unassociated with the log id. Thus,
an equal firing probability is assumed in the models of all
logs. Under this assumption, the probability of firing t equals
p=

∑
i∈{1,2,3} Vi(ti)/

∑
i∈{1,2,3} Vi(ei).

In the tables, the first variable, which models if a transition
was fired, takes two values (R={‘success’, ‘failure’}), while the
second variable, which models the log index, takes three values
(C={1, 2, 3}). We compute the test statistics x =

∑
(O−E)
E . Then,

we calculate the likelihood of obtaining the value of the test
statistics or larger value P (χ2 > x) for χ2-distribution with
(R− 1)(C − 1) = 2 degree of freedom. We refer to this value
as the p-value of the test. If the p-value is smaller than α, we
reject the null hypothesis and perform a set of Z-tests between
the logs, i.e., the following pairs are compared (t1, t2), (t2, t3),
(t1, t3) for the same α value and user defined d value.

As the number of differences found per transition by the
pairwise comparisons may be large, it is useful to aggregate
the results of multiple hypotheses tests by grouping the logs.
Intuitively, a good grouping keeps logs with similar propor-
tions together and separates logs with statistically different
proportions. Such a grouping of log indices can be presented
to the engineer to communicate the differences across logs.
We present a simple and efficient label grouping procedure.

Log Index Grouping Procedure. First, we order the logs by
their proportions. Then, we initialize a group (of logs) and add
the logs to it, until reaching a log that is statistically different
(for the chosen d, α) from at least one of the other logs in
the group. When we reach such log, we initialize a new group
and repeat the process, until all logs are processed.

Theorem 2. The procedure ensures that no statistically
different logs appear in the same group.

Finally, we provide a high-level description of snKDiff.

The snKDiff Algorithm. The algorithm starts by constructing
the k-DiffLFSM (see Def. 4). It enriches the states and
transitions with the trace visit counters, one per log. Then, to
find (k, d)-differences that are statistically significant, it iterates
over its transitions. For each transition, it gets the number of
source state and transition visits (ni=V (t(q)), mi=V (t)) per
log, and conducts a χ2-test. If the test result is a p-value
lower than α, it continuous to perform a series of pairwise
comparisons using the Z-tests. If any of the Z-test is found
significant, it groups the log indices according to the log index
grouping procedure. Then, it highlights the transition and labels

it with the groups of log indices. Finally, snKDiff returns the
labeled k-DiffLFSM, along with a summary of the results of
the statistical tests preformed per transition (in a csv format).

Theorem 3 (snKDiff Soundness and Completeness). Let k
be a positive integer, d ∈ [0, 1], α ∈ [0, 1], and let L1,
L2, . . . , Ln be n logs compared using snKDiff. Denote
the logs’ k-PFSMs by S = {k-PFSM1, k-PFSM2, . . . , k-
PFSMn}. Then, any reported (k, d)-difference corresponds to
a statistically significant difference between a pair of models
from S (soundness), and any (k, d)-difference between the
models in S is reported (completeness).

V. EVALUATION

We present an evaluation in three parts. The first evaluates
the effectiveness of s2KDiff and snKDiff in terms of soundness,
completeness, and performance. The second is a controlled
user study. The third is a case study using real-world logs.

All logs, models, and implementation code we describe
together with their documentation are available for inspection
and reproduction from [1].

A. Soundness and Performance Evaluation

We conducted an evaluation of the effectiveness of s2KDiff
and snKDiff, guided by the following research questions:
RQA1 Do the expected statistical guarantees hold in practice?

(statistical soundness)
RQA2 Are all differences reported? (statistical completeness)
RQA3 Do the algorithms scale?

Note that although we have theorems that state the soundness
and completeness of s2KDiff and snKDiff, we still need to
evaluate the correctness of the application of the statistical
tests, i.e., to observe that the empirical error rate we obtain is
below the theoretical α guarantee, and that the power of the
test, β, increases with log size as expected. This may not be
the case, e.g., if the assumption that the log traces are i.i.d.
does not hold, or if there are bugs in the implementation of
the algorithms.

Below we describe the corpus of models and logs we used,
the different measures, the experiments, and their results.

1) Corpus of Models and Logs: In the evaluation we used
13 finite-state automaton models, taken from publicly available
previously published works and reports: [11], [17], [21], [24],
[29]–[31], [33]. The models varied in size and complexity:
the alphabet size ranged from 8 to 22, the number of states
ranged from 11 to 24, and the number of transitions ranged
from 19 to 37. To facilitate the evaluation, we simplified the
models by manually eliminating back-loops and self-loops. This
simplification is not required for our algorithms to work. We
use it to analytically calculate the seqk transition probabilities
for use as ground truth.

To produce a log from a model, we enriched the model
with randomly selected transition probabilities and then created
traces using a random trace generator. The trace generator
starts on the dedicated initial state and makes a series of



random transitions according to the transition probabilities,
until reaching the dedicated terminal state.

2) Measures: We define two key measures for a set of
hypothesis tests, the empirical statistical error rate α̂, and the
empirical power of the test β̂, for both the Z-test and the χ2-
test, as follows. We use the classical true/false positive/negative
measures, as summarized below.

Z-test Z ≤ α Z > α

|p1 − p2| < d fn tn
|p1 − p2| ≥ d tp fp

χ2-test χ2 ≤ α χ2 > α

∀i, j pi = pj fn tn
∃i, j pi 6= pj tp fp

The error rate of a hypothesis test is defined w.r.t. the cases
in which the null hypothesis holds. In the Z-test, the null
hypothesis holds when |p1−p2| < d, and in the χ2-test it holds
when ∀i, j pi = pj . Thus, we define the empirical error rate of a
series of statistical tests to be the proportion of rejected cases in
which the null hypothesis held, i.e., α̂Z = α̂χ2 = fp/(tn+ fp).
The empirical error rate α̂ is expected to be less than the
statistical error rate of the test α.

The statistical power β̂ of a hypothesis test is defined with
regards to the cases in which the alternative hypothesis holds.
Thus, we define the empirical power of a series of statistical
tests to be the proportion of rejected cases in which the
alternative hypothesis held, i.e., β̂Z = β̂χ2 = tp/(tp+ fn).

Lastly, we measure the absolute running times (in seconds).
In measuring running times we included all steps, from parsing
the logs, to computing the models, running the differencing
procedures, and outputting the results. We executed all experi-
ments on an ordinary laptop computer, Intel i5 CPU 2.4GHz,
8GB RAM with Windows 8 64-bit OS, Java 1.8.0 45 64-bit.
We executed all runs 10 times, to average out measurement
noise from the Java execution.

3) s2KDiff Experiments and Results: To answer the three
research questions for s2KDiff we conducted the following
experiment. For fixed k, d, and α, for each model, we
produced two random logs of n ∈ {100, 1000, 2000} traces,
and measured α̂Z , β̂Z , and the running time.

RQA1 & RQA2: Soundness and Completeness. We run
s2KDiff with k ∈ {2, 3, 4}, d ∈ {0.01, 0.05, 0.1}, and α =
0.05. We obtain α̂Z < 0.05 in all models, i.e., the the empirical
error rate is below the theoretical α guarantee, as expected,
see [1].

We obtained β̂Z medians of 0.38, 0.73, and 0.81, and
averages of 0.39, 0.72, and 0.79, for n = 100, 1000, and
2000 resp. As can be seen, β̂Z increases with the log size.
That is, the larger the log, the more differences the method is
able to detect. This phenomena is well-known when conducting
statistical tests.

RQA3: Performance. Figure 3 shows running times for k=2,
d=0.01, α=0.05, n ∈ {26, 27, . . . , 214}.

We report running times of k-Tails and s2KDiff. We observe
that both algorithms scale well, and terminate within 1 second
over the largest logs.

We computed the slowdown of s2KDiff w.r.t. k-Tails, by
dividing the running time of s2KDiff by that of k-Tails. We
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Fig. 3: The figure reports the average running times of kTails, s2KDiff,
and snKDiff, when running with k=2, d=0.01, α=0.05, n ∈ {26 =
64, . . . , 214 = 16K} over the 13 models. For snKDiff, m = 2.

obtained a median and an average slowdown of 10.90% and
11.75% resp. We did not identify any relation between the
slowdown and the log size n.

Importantly, the running times increase linearly as the
log size doubles with a median and an average increase of
15.30% and 24.34% for k-Tails, and 17.42% and 26.24% for
s2KDiff resp. This occurs as the number of k-sequences quickly
converges to a constant. As a result, only the traces reading
time is affected by the increase of the log size.

We have evidence showing that s2KDiff achieves the
statistical guarantees of its underlying statistical test α. Its
power β varies across models, and increases dramatically
with the log size. It incurs an acceptable overhead.

4) snKDiff Experiments and Results: To answer the three
research questions for snKDiff we conducted the following
experiment. For fixed k=2, d=0.1, and α=0.05, for each model,
we produced m random logs for m ∈ {2, 4, 6, 8}, each log of
length n ∈ {100, 1000, 2000}. Recall that snKDiff consists of
a χ2-test that is followed by a series of Z-tests. The results of
the Z-tests were consistent with the results of s2KDiff, see [1].
We focus here on α̂χ2 , β̂χ2 , and the running time.

RQA1 & RQA2: Soundness and Completeness. For fixed
k=2, d=0.1, and α=0.05, for each model, we produced
four (m = 4) random logs, each log of length n ∈
{100, 1000, 2000}, and run snKDiff over the different models.

We observe that α̂χ2 = 0 in all of the experiments. Recall
that the null hypothesis in the χ2-test is that the proportions
between the transitions are equal. This was never the case,
as we randomly assigned the transition probabilities. That is,
in no experiments all four logs had equal probabilities over
corresponding transitions.

We observe that β̂χ2 varies substantially across different
models and increases with n. We did not observe any correlation
w.r.t. m. We obtained β̂χ2 medians of 0.36, 0.88, and 0.96,
and averages of 0.35, 0.83, and 0.93, for n = 100, 1000, and
2000 resp.

We repeated the same experiment for k ∈ {3, 4} and d ∈
{0.05, 0.01}, and observed the same phenomenon.



RQA3: Performance. Figure 3 shows running times of snKD-
iff for k=2, d=0.01, α=0.05, m = 2, n ∈ {26, 27, . . . , 214}.

Similar to s2KDiff, we observe that the algorithm scales, and
terminates within 1 second over the largest logs. We measured
median and average slowdown of snKDiff w.r.t. k-Tails of
9.34% and 11.03% resp. Similar to k-Tails and s2KDiff, the
algorithm requires linear time w.r.t. the log size. The additional
computation time required to apply the χ2-test is negligible.

We run snKDiff for k = 2, d = 0.01, α = 0.05, n = 1024,
m ∈ {2, 4, 6, 8}, and observed linear increase in the running
time across all models, see [1]. To test this further, we averaged
the running time per m ∈ {2, 4, 6, 8} across all models, and
fit a linear line. We obtained R2 = 0.9979. This indicates that
a linear line captures the relation between the number of logs
and the running time.

We have evidence showing that snKDiff achieves the statis-
tical guarantees of its underlying statistical tests (αχ2 , αZ ).
Its power w.r.t. both tests (βχ2 , βZ ) varies across models,
and increases dramatically with the log size. It incurs an
acceptable overhead.

5) Threats to Validity: The selection of models in our
evaluation may not represent typical systems. To mitigate,
we used 13 publicly available models with non-trivial size and
complexity, taken from previous works (see Sect. V-A1). Yet,
we do not know to what extent these are representative of
real-world systems. To generate logs from the models we used
a publicly available trace generator [24]. It is possible that
one may get different results if a different trace generator or a
different coverage criterion is used.

B. Controlled User Study

We conducted a controlled user study to investigate whether
s2KDiff and snKDiff are useful to their potential users. The
study focuses on evaluating pertinent features of the algorithms
and the research questions guiding it are:
RQB1 Can using s2KDiff and snKDiff help participants more

accurately identify behavioral differences between different
versions of the same system?

RQB2 Do s2KDiff and snKDiff shorten the time required
for participants in identifying if and when a behavioral
difference was introduced into a system?

1) Experiment Setup: Independent and Dependent Vari-
ables. The purpose of the user study is to examine whether
s2KDiff and snKDiff provide participants with support in
finding statistically significant differences among logs better
than some alternatives (baselines), while considering a number
of different logs. Thus, our experiment has two independent
variables, the tool used to find log differences, the log set, and
two dependent variables, correctness of the task solution (i.e.,
answers given by participants) and completion time.

Similar to our previous work [3], we compared
s2KDiff + snKDiff, against k-Tails as the baseline. Since
the classical k-Tails model does not include the information
required to preform the statistical comparisons, we extend the

model with transition probabilities, and with state, transition
trace visit counters (see Sect. IV-A). We also allowed partici-
pants to use a text differencing tool [12]. We choose k-Tails,
due to its popularity and for consistency with the previous
work [3]. Direct comparison to 2KDiff + nKDiff [3] could not
be done as these only account for existential differences.

We used four models: CVS, OrdSet, SMTPProtocol, and
ZipOutStream (see Sect. V-A1). We chose these models as
they include short and comprehensive alphabets and did not
yield models that were too large for a human to interpret.

From each model, we generated five logs as follows. First
we enriched the models with randomly generated transition
probability distributions and copied them. Then, to introduce
at least a single k-difference in the copied model, we randomly
selected a pair of transitions with an identical source and
mutated their probabilities by subtracting 0.2 from one and
adding it to the other. We validated that the mutation resulted in
valid transition probabilities. Then, we run the trace generator
described in Sect.V-A over both models and produced three
logs from the original model and two from the mutated one.
All logs included 5000 traces.

Participants and Task Assignments. We invited 20 graduate
students with background in computer science from two
universities. All participants are senior students except one
who is a first-year postgraduate. Every participant is required
to perform four tasks by analyzing four log sets. For each task,
a participant needs to use a log differencing tool to perform it.
Among four tasks, two are required to use k-Tails, and the other
two are required to use s2KDiff + snKDiff. All participants
were presented with the log sets in a similar order. To avoid
biases, we designed the experiment such that each log was
analyzed by each of the tools.

Detailed Procedure. To complete a task, participants are
required to analyze a log set using a specified tool and
eventually answer several questions through a web interface.
The following are the three questions that we asked participants
for each task: (1) Is there a 2-sequence whose frequency in
one log is more than 0.1 higher than its frequency in another
log and the difference is statistically significant? (2) Please
specify such a 2-sequence, and (3) What is a pair of log ids
whose corresponding logs exhibit such difference?

The participants attempt each of the four tasks one by one.
Before starting the user study, to instruct the participants in
answering these questions and completing the tasks, they are
required to read a tutorial and watch videos explaining the two
log differencing tools and how they can be used to complete
the tasks using an example task.

Note that if a participant answers ‘No’ to the first question,
they will not be asked the subsequent questions. Our web
interface recorded participants’ answers and the amount of
time they used to complete each task.

2) Results: We report our user study results by answering
the research questions mentioned earlier as follows.

RQB1: Correctness. After all participants completed the
experiments, we evaluated the correctness of the participant



TABLE II: Percentage of participants who gave correct answers
Q1 Q2 Q3

k-Tails s2KDiff+snKDiff k-Tails s2KDiff+snKDiff k-Tails s2KDiff+snKDiff
CVS 60% 90% 10% 70% 10% 80%
ordSet 0% 100% 0% 90% 0% 90%
SMTPProtocol 30% 90% 10% 70% 20% 80%
ZipOutStream 40% 90% 10% 80% 10% 90%

TABLE III: Average completion time results (seconds)

k-Tails s2KDiff+snKDiff k-Tails s2KDiff+snKDiff
CVS 843.50 380.00 SMTPProtocol 600.90 317.10
ordSet 522.70 458.70 ZipOutStream 562.10 179.90

answers. If a participant chose “No” option for the first question
of a task, the remaining two questions are labeled as incorrect.
Table II presents the percentage of participants who gave correct
answers. For question 1, it is the percentage of participants who
answered “Yes”. As shown in the table, very few participants
who use k-Tails can identify the difference among the log
sets. Even though some of them answered “Yes” for the first
question, they wrongly identified the 2-sequence and the log
pairs. This is because the models generated by k-Tails are
too complex, with many transitions. It is difficult for the
participants to switch different browser windows to compare
several models. On the other hand, most of the participants who
use s2KDiff + snKDiff gave the correct answers for question
2 and 3. Only few participants did not answer the questions
correctly; we talked with them and found that they did not
fully understand the tool as it is the first time they used it.

RQB2: Completion Time. Table III presents the av-
erage completion time for each task using k-Tails and
s2KDiff + snKDiff. The average completion time for tasks
performed using s2KDiff + snKDiff is lower than that of k-Tails.
We also performed Wilcoxon signed-rank test and found that
the differences are all statistically significant at a confidence
level of 99% with a large effect size.

C. Case Study: findyourhouse.com from Ghezzi et al. [15]

We conducted a case study in order to answer the following
research question:
RQC What kind of insights about the evolution of a system

over time and about differences of its usage patterns can
one learn by using our tools?

We used a log from the real-world application, findyour-
house.com, presented by Ghezzi et al. [15]. To parse the log,
we followed the description of the authors and the regular
expressions included in the paper. In this log, each trace
includes the pages visited in a single user session. The log
represents data collected over a year of operation with real
users. The alphabet size (unique web-pages) is 26. The total
number of events is 37,465. The results and figures of the
usage scenarios below are provided in [1].

1) Changes in behavior over time: We used the session date
to split the original log into 4 disjoint logs, each consisting of
sessions from one quarter (3 consecutive months). The 4 logs
contained 2048, 2606, 2415, 1657 traces resp. The average
trace length is 4.29.

We then run snKDiff on the 4 logs, with k=1, d=0.05, and
α=0.05. Executing snKDiff took 2.01 seconds. Out of 335

transitions, snKDiff reported 49 to have statistically significant
difference between at least 2 logs.

We focused on the sales search module, and specifically on
its first four result pages. We selected this module because it
is the main module of the application, it was heavily used by
its users, and it was analyzed by Ghezzi et al. [15]. From the
snKDiff output, when considering the statistically significant
transitions, we observed the following phenomenon: as time
progresses from one quarter to the next, users are more likely
to end their session on earlier search result pages. This may
indicate a possible improvement in the quality of the sales
search results, a change in the order of the search results, or any
other change (we were unable to contact the original owners
of the data for comments on these findings).

As evidence, snKDiff found a statistically significant dif-
ference in the transition probabilities from the first search
page to the second, where pq1=35.1%, pq2=32.8%, pq3=26.5%,
pq4=15.53% in quarters 1 to 4 resp. Further, the transition
probabilities of terminating the session after the first search
page were 7.5%, 9.09%, 16.0%, and 30.0% in quarters 1 to 4
resp., and were also statistically different.

Note that since all transitions have been observed at least
once in each of the 4 logs, the algorithms of [3] could not
reveal this phenomenon. Also note that the analysis by Ghezzi
et al. [15], which presented this log, deals with transition
frequencies but not with their differences and not with statistical
significance. Thus, it too, could not reveal this phenomenon.

2) Desktop vs. mobile users - usage preference: We used
the user’s browser and operating system (as documented in
the log) to separate traces of desktop and mobile users, and
thus produced two logs of 5033 and 885 traces resp. (ignoring
traces from bots). The events alphabet size for the desktop and
the mobile logs were 16 and 13 resp. Average trace length
was 6.22 and 3.81 resp. For s2KDiff below we used k = 1,
d = 0.05, and α = 0.05. Executing s2KDiff took 1.05 seconds.

Out of 145 transitions, s2KDiff reported 14 (k, d)-differences.
Interestingly, the mobile users show higher probability of
transitioning out of the application in comparison to the desktop
users in 6 out of the 13 common web-pages: homepage,
sales_anncs, renting_anncs, renting_page, contacts,
news_article. For example, exiting through the homepage
had a transition probability of 23.68% and 39.9% in desktop
and mobile users resp. The trace selected for the mobile users
included a single visit to the homepage. Indeed, out of all
mobile traces, this trace appeared 108 times. These results are
also consistent with the lower number of webpage visits per
trace in the mobile log.

This demonstrates how s2KDiff reveals significant differ-
ences between the behaviors of desktop and mobile website
users, which could not be revealed using previous methods.

VI. DISCUSSIONS

Implications and Broader Context. s2KDiff and snKDiff are
not meant to replace prior log differencing tools, e.g., our own
2KDiff and nKDiff [3]. Rather, they complement the prior work
for use cases where differences in frequencies are meaningful.



A use case where the capabilities of the new tools are needed
is highlighted in Section V-C. In that case study, s2KDiff
and snKDiff have been employed to uncover insights about
the evolution of a system over time, and about differences of
its usage patterns. 2KDiff and nKDiff are unable to uncover
such insights as they do not analyze differences in frequencies.
Another potential application of log differencing is in the area
of malware analysis; log differencing can be applied to compare
logs of clean and infected apps to identify malicious activities.
The power of s2KDiff and snKDiff to consider differences
in frequencies will be beneficial to uncover hidden malicious
behaviors that are masqueraded as valid ones, e.g., [36].

Dealing with Unstructured Logs. Our work, like most related
work on model inference from logs, requires structured logs
as input. In practice, many logs are unstructured. Fortunately,
past studies have proposed preprocessing methods to convert
unstructured to structured logs, e.g., [13], [26], [39]. Those
methods may be employed to allow our approach to work for
unstructured logs.

Configuring s2KDiff and snKDiff. Our tools take as input
a structured log and 3 parameters: α, k, and d. The choice
of α, the significance level, is clear, as it is considered a
standard; many past studies use 0.01 or 0.05 as significance
levels for their statistical tests. The choice of k, the parameter
for the k-Tails algorithm, is also clear; past studies often set
the value of k to be 1 or 2 [9], [23], [25]; indeed, any use of
k-Tails requires the engineer to choose a value for k. The actual
parameter whose setting is to be determined is d, which ranges
between 0 and 1. To set this parameter, engineers can start
with a high value of d, close to 1, and gradually decrease it
until differences are uncovered. If more differences are desired,
the value of d can be decreased further. The same strategy
is often employed by users of rule-based or scenario-based
specification mining tools, e.g., [8], [20], [22], who need to
configure several parameters, e.g., support and confidence.

VII. RELATED WORK

Many works suggest means to infer models from logs. The
works differ in the kinds of input logs and output models.
A number of them mined specifications in the form of FSM
from a set of logs. For example, Beschastnikh et al. proposed
Synoptic, which infers three kinds of temporal invariants from
logs and uses them to refine an inferred FSM [5]. Le et al.
proposed SpecForge, which forges a new FSM from FSMs
mined by other solutions through model fission and fusion
operations [18]. More recently, Le and Lo proposed DSM that
uses the power of a deep learning engine (i.e., Long Short-Term
Memory network) to learn FSMs from logs [19]. Different
from the aforementioned works, in this work, we focus on
producing an FSM capturing differences between two logs,
s2KDiff, and between many logs at once, snKDiff.

In an experience report on log-based behavioral differencing,
Goldstein et al. [16] focused on visualizing anomalies. Given
two logs, they use k-Tails to build a model for each log, and
then compare the two models. Their models are enriched with

quantitative data but their analysis does not involve statistical
guarantees. Their work is limited to comparing two logs while
our snKDiff algorithm compares many logs at once.

Wang et al. [37] compared sets of inferred temporal invari-
ants, as one of several approaches to examine whether tests are
representative of field behavior. The work does not consider the
statistical significance of the differences it finds. Comparing
lab and field logs is one potential application of our work.

Most related is our recent work [3], which presented 2KDiff
and nKDiff. As we discussed earlier, here we extend these
algorithms fundamentally. Specifically, unlike [3], our present
work accounts for the frequencies of behaviors in the logs and
provides statistical guarantees about the differences it finds.

In Sect. IV-C we presented a procedure for grouping log
labels. Scott and Knott [32] proposed the Scott-Knott algorithm,
a clustering based approach, which compares multiple variables
and breaks them into homogeneous groups, i.e., groups with
statistically distinct means. Similarly, Tantithamthavorn et
al. [34] proposed the Scott-Knott Effect Size Difference Test,
which also accounts for the difference between the means of
the groups by incorporating the effect-size measure. In contrast,
our underlying hypothesis test is different, as it also accounts
for the distance between the proportions. Further, to avoid
clutter and emphasize the differences, we only include labels
of logs that appear statistically different from at least one of
the other logs.

VIII. CONCLUSION AND FUTURE WORK

We presented statistical log differencing, as a means to
compute and present differences between two or more execution
logs, taking into account the frequencies of the behaviors in
the logs and reporting only (and all) statistically significant
differences. Our evaluation shows the effectiveness of our
work in terms of soundness, completeness, and performance.
It demonstrates effectiveness using a controlled user study and
potential applications via a case study using real-world logs.

We consider the following future work. First, for additional
statistical confidence and scalability over logs of unbounded
length, one may consider adapting the approach of our previous
work on model inference with statistical guarantees [7] to add
another statistical dimension, i.e., allowing engineers to set a
required confidence level and then sample from the logs at hand
until reaching statistical guarantees about the confidence in the
result (where the probability of additional sampling to reveal
new significant differences is smaller than a required threshold).
Second, additional case studies to evaluate the use of statistical
log differencing in practice and the kinds of insights one can
learn from its application. We specifically consider applications
in test generation and execution.
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