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Figure 1:Our combinatorial explorationmethodology helped user study participants expose bugs in specifications such as a car driving in fog
(A) or crossing a junction during red light (B). These bugs, andmore, were not detected by participants before using combinatorial exploration.

ABSTRACT
Reactive synthesis is an automated procedure to obtain a correct-by-

construction reactive system from its temporal logic specification.

While the synthesized system is guaranteed to be correct w.r.t. the

specification, the specification itself may be incorrect w.r.t. the

engineers’ intention or w.r.t. the requirements or the environment

in which the system should execute in. It thus requires validation.

Combinatorial coverage (CC) is a well-known coverage criterion.

Its rationale and key for effectiveness is the empirical observation

that in many cases, the presence of a defect depends on the interac-

tion between a small number of features of the system at hand.

In this work we propose a validation approach for a reactive

system specification, based on a systematic combinatorial explo-

ration of the behaviors of a controller that was synthesized from

it. Specifically, we present an algorithm to generate and execute a

small scenario suite that covers all tuples of given variable value

combinations over the reachable states of the controller.

We have implemented our work in the Spectra synthesis en-

vironment. We evaluated it over benchmarks from the literature
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using a mutation approach, specifically tailored for evaluating sce-

nario suites of temporal specifications for reactive synthesis. The

evaluation shows that for pairwise coverage, our CC algorithms

are feasible and provide a 1.7 factor of improvement in mutation

score compared to random scenario generation. We further report

on a user study with students who have participated in a work-

shop class at our university and have used our tool to validate their

specifications. The user study results demonstrate the potential

effectiveness of our work in helping engineers detect real bugs in

the specifications they write.
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1 INTRODUCTION
Reactive synthesis is an automated procedure to obtain a correct-

by-construction reactive system from its temporal logic specifica-

tion [43]. Rather than manually constructing an implementation of

a reactive controller and using model checking to verify it against

a specification, synthesis offers an approach where a correct imple-

mentation is automatically obtained for a given specification, if such

an implementation exists. As the correct-by-construction promise

is attractive, much progress has been achieved over the last two

decades on reactive synthesis algorithms, tools, and applications,

e.g., [4, 8, 15, 33, 34, 37]. In light of these, and as reactive synthesis

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
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makes its first steps in industry (e.g., [50]), an old, fundamental

question, becomes unavoidable and urgent: how do we know that

the specifications used as input for the synthesis are correct?

What does it mean for a specification to be “incorrect"? A speci-

fication may be incorrect w.r.t. the intentions of the engineer who

wrote it. She intended to write a constraint that means something

but as a result of a typo or an incorrect understanding of some

language construct, wrote a constraint that means something else.

A specification may also be incorrect w.r.t. the system’s require-

ments and the environment in which it will operate. The engineer

correctly wrote what she intended to write, but her knowledge of

the requirements or the environment is wrong or limited.

Regardless of the type of incorrectness, an incorrect specification

invalidates the entire reactive synthesis pipeline: it will result in

no implementation (in case the specification is unrealizable) or,

worse, in an implementation that the synthesizer considers to be

correct, but should not be used. What is the value of a correct-by-

construction implementation if one cannot trust the correctness of

the specification it was synthesized from?

Since a specification is declarative and potentially complex, it is

difficult to validate it directly. We thus set out to examine the be-

haviors it induces by exploring the behavior of a controller that was

synthesized from it, using a set of scenarios, i.e., bounded example

executions. Scenarios are tangible and simple; as they will execute,

they will make behaviors actually occur and thus instantiate the

defects and expose the gap, if any, between the engineers intention

and knowledge on the one hand, and the specification as written

and the requirements and real environment on the other hand.

As controllers are large, they enable a huge number of scenarios.

Thus, given limited resources, which scenarios should we generate

and execute in order to maximize our chances of exposing defects?

Combinatorial Coverage (CC) is a well-known coverage criterion.

Its rationale and key for effectiveness is the empirical observation

that in many cases, the presence of a defect depends on the interac-

tion between a small number of features of the system at hand. For

example, according to [31], all possible pairs of parameter values

can typically detect 47% to 97% of the bugs in a system under test.

The application of CC requires a model, consisting of a set of vari-

ables, their respective possible values, and constraints on the value

combinations. CC is parameterized with a parameter t , specifying
the size of the combinations that need to be covered. The common

case in practice, where t = 2, is termed pairwise coverage. When a

set of assignments covers all valid value combinations of every t
variables, the set is said to achieve 100% t-way interaction coverage.

In this work we present an approach for validating the
correctness of a reactive system specification via systematic
scenario-based combinatorial exploration of the behaviors
of a controller that was synthesized from it. Specifically, as the
controllers we deal with have an exponentially large state space, a

set of scenarios that will cover all states is infeasible to generate and

to execute. Instead, we follow a CC approach and aim at generating

a small set of scenarios, a scenario suite, that covers all tuples of

variable value combinations of size t over the reachable states of
the controller.

A scenario in our context means a sequence of valid environment

inputs for the controller. At each state in the sequence, the scenario

chooses the environment inputs and the controller responds by

updating the system variables (outputs) values according to the

controller’s deterministic logic. At each state both the environment

and the system variables are recorded for creating the CC. A com-

plete scenario suite consists of a number of scenarios that together

visit a set of states that provides coverage of all of the tuples.

Finding the smallest combinatorial covering scenario suite is

NP-hard (already in its original setup), and thus, also in our context

of controllers, heuristic algorithms are required. We present an

algorithm that uses heuristics and a greedy approach. It adds states

sequentially while maximizing the added coverage of each added

state. It is symbolic (and implemented using BDDs), in order to

scale to specifications over many variables.

An interesting aspect of our work relates to the combinatorial

model. One of the challenges in applying CC in practice is the

creation of the combinatorial model, a model which defines the

variables, their domains, and the constraints on their allowed values.

CC requires a combinatorial model as input, and in its common

use, when the model in manually created, its definition is a costly

and error prone process [48]. In our context, however, we use the

reachable states and transitions of the synthesized controller as an

implicit model. There is no need for manual model definition.

Note that the validation of the specification against the intended

requirements, in contrast to verification of an implementation

against the specification, cannot be fully automated. There is no

way to automate an oracle because there is no ground-truth model

available to validate the formal specification against. Our work

automates the exploration of the behaviors that the specification

induces such that many different behaviors are covered by a small

set of scenarios. Beyond this automation, human involvement is

required, to examine the generated scenarios as they are executed

and judge whether they meet the intended requirements.

We implemented our ideas on top of Spectra [35], a specifica-

tion language and reactive synthesis environment. We present two

evaluations. First, a technical evaluation with existing benchmarks,

where we use a mutation approach, specifically tailored for reactive

systems temporal specifications. The results show that for pairwise

coverage, our CC algorithms are feasible and provide a 1.7 factor

of improvement in mutation score compared to random scenario

generation. Second, a user study with students who have partic-

ipated in a workshop class and have used our CC tool. The user

study results demonstrate the potential effectiveness of our work to

help engineers in detecting real bugs in specifications. Fig. 1 shows

screenshots from simulations executed by participants of our user

study, demonstrating bugs they were able to expose using our CC

tool and did not find before using it. See Sect. 5.

To our knowledge, our work is the first to present, implement,

and evaluate the validation of reactive systems specifications for

synthesis through a systematic combinatorial exploration of synthe-

sized correct-by-construction controllers. We discuss related work

on CC and on dealing with problems in specifications in Sect. 6.

2 PRELIMINARIES
We recall necessary background and link it to our context.

Binary Decision Diagrams
Binary decision diagrams (BDDs) [12] are a compact data struc-

ture for representing and manipulating Boolean functions, tradi-

tionally used in formal verification [17]. A BDD is a rooted, directed,
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acyclic graph, in which nonterminal nodes represent Boolean vari-

ables, outgoing edges represent values for these variables, and

terminal nodes represent Boolean decisions. Given values for the

Boolean inputs, the result of the function is achieved by traversing

the graph accordingly until a terminal node is reached.

Using BDDs we can efficiently perform operations on Boolean

functions. Standard operations such as conjunction, disjunction,

and negation can all be computed efficiently. The “exists” and “forall”

quantifiers (e.g., д(x) = ∃y f (x,y)) are also easy to compute. Count-

ing the number of possible assignments is done in time polynomial

to the size of the BDD and iterating over all assignments takes

constant time per assignment. Finally, an extension to multi-valued

variables exists, enabling us to use multi-valued variables and still

compute the mentioned operations efficiently. We take advantage

of all these in our algorithms.

Synthesized Controllers and their Symbolic Representation
Reactive synthesis is an automated procedure to obtain a correct-

by-construction reactive system directly from its temporal logic

specification. A specification uses environment (input) and system

(output) controlled variables. It consists of assumptions and guar-

antees about what should hold in all initial states, in all states and

transitions, and infinitely often in every infinite run of the system.

Synthesis outputs a controller, where each state is an assignment to

all variables. In each step, the environment chooses the next assign-

ment to the input variables, and the controller responds by choosing

the next assignment to the output variables. By construction, all

possible runs of the synthesized controller satisfy the specification,

i.e., roughly, if a run satisfies all assumptions, then it also satisfies

all the guarantees.

Importantly, the synthesized controller can be represented sym-

bolically using BDDs. This is achieved by using an initials BDD
that represents all valid initial states and a transitions BDD that

represents the controller’s response to each input of the environ-

ment. This symbolic representation of the controller is common to

many synthesizers, including Spectra [35]. Execution of the con-

troller is done by reading an environment input and then using

the transitions BDD to choose the next assignment to the system

variables. Furthermore, the symbolic representation enables the

efficient performance of operations such as computing the intersec-

tion/union of sets of states; computing all immediate successors of

a set of states; playing a reachability game from one set of states to

another; choosing a single state from a given set of states (choosing

a satisfying assignment); and calculating the number of states in

a set of states (counting satisfying assignments). We use all these

in our algorithms and thus the efficiency and effectiveness of our

work rely on these properties of the symbolic representation.

Combinatorial Coverage
Combinatorial Coverage (CC) is a well-known coverage criteria,

requiring that all valid value combinations of size t of the parame-

ters of a system are covered. The challenge is to achieve CC using

a small set of assignments. We adopt the formalization from [45].

Let P = p1, . . . ,pn be an ordered set of parameters, V =

V1, . . . ,Vn an ordered set of value sets, whereVi is the set of values
for pi ,C a set of constraints over P , and t ≥ 1 is an interaction level.

We consider assignments to all parameters in P . A valid assignment

Figure 2: A (partial) scenario suite tree for the DeliveryBot specifi-
cation. See Sect. 3.

is one that satisfies all constraints in C . The set of all valid assign-

ments is denoted by S(P,V ,C). A subset of the valid assignments

S ′ ⊆ S covers all interactions of size t , iff every assignment of values

to every subset of P of size t that occurs in some assignment in S ,
occurs in some assignment in S ′. Many algorithms and tools exist

for achieving CC using a small as possible set of assignments. Since

in our setup, the synthesized controller is given symbolically, using

BDDs, we are specifically interested in the symbolic BDD-based

greedy heuristic algorithm from [45]. We use it as a starting point

and extend it to the stateful context of our controllers.

3 OVERVIEW AND RUNNING EXAMPLE

Overview
In our work, we aim to validate a specification through a system-

atic combinatorial exploration of a controller that was synthesized

from it. The synthesized controller is defined over environment and

system variables, which together correspond to P in the traditional

CC setting (see Sect. 2). Each variable has a respective value set

in V , and the set of constraints C is implicitly defined by all the

reachable states of the synthesized controller.

The key difference between the traditional CC problem and the

one we face here, is that in addition to the constraints represented

by C , i.e., the reachable states, we have another constraint on our

ability to choose assignments to variables. Specifically, since the

controller is stateful, one needs to create a sequence of valid inputs

that together with the controller’s reaction will achieve the desired

coverage. Thus, formally, to the traditional setup described in Sect. 2,

we implicitly add the following constraint: ∀s ∈ S ′, either s is an
initial state of the controller or ∃s ′ ∈ S ′ s.t. s is a successor of s ′.

Finally, we represent the resulting scenario suite as a tree. Each

node in the tree represents an assignment to all variables, i.e., a

state in a run of the controller, and each path from root to leaf in the

tree represents a scenario, starting from an initial state and ending

when reaching the leaf. We show an example of a partial scenario

suite tree in Fig. 2. We elaborate on this example later in the paper.

Our CC algorithm guarantees that the resulting scenario suite is

sound and complete: soundness means that each scenario is a valid

run of the controller; completeness means that all the possible value

combinations in the provided variable tuples that are reachable by

the controller, will be reached by the scenario suite.

Specification and Scenario Suite Generation
We use a small running example in order to demonstrate our ap-

plication of CC to reactive controllers and provide a rough overview

of our algorithm’s input and output. A formal presentation appears

in Sect. 4. The example is representative of some of the kinds of

applications of synthesis, see, e.g., [28, 40], but is much smaller than
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the specifications we use in our evaluation (≈ 8000 reachable states

as opposed to 10
6
up to 10

16
reachable states).

Listing 1 presents part of a specification of a simple delivery

robot, written in the Spectra language [35]. It describes a delivery

robot moving on a 2-dimensional grid. Its job is to pick up boxes

provided by the environment from anywhere on the grid and to

bring them to (0, 0). In addition, the robot has a variable motor-
Speed, indicating how many steps in the grid it may advance in

each turn. In total, the specification has six variables: boxLocX,
boxLocY, motorSpeed, botLocX, botLocY, and hasBox.

Is this specification correct? Perhaps the engineer who wrote

it had a typo in one of the assumptions or guarantees? Perhaps

she missed a critical guarantee? To help validate the correctness

of the specification against the intended requirements, our tool

provides an automatic and systematic means to efficiently explore

the possible behaviors it induces. We use the Spectra synthesizer

to synthesize a controller and run the CC algorithm with a set T
containing all tuples of variables as input.

In our example, we chose t = 2 and thus the size |T | would be 15,
as there are 6 variables, resulting in 15 unique pairs between them.

Notice that T contains tuples of variables and not tuples of values.

The algorithm will cover all the valid (reachable) combinations of

value assignments for each pair. So in this case, even though there

are only 15 pairs of variables, the algorithm needs to cover a total of

342 different pairs of values, which are reachable in the synthesized

controller. Of course, these pairs can be covered in a scenario suite

that includes less than 342 states, because each state covers many

variable value pairs.

For this input of a controller and a set of variable tuples to cover,

our algorithm outputs a scenario suite in the form of a tree. Each

node in the tree represents a state of the controller. Each path from

root to leaf in the tree represents a scenario.

Example 3.1. Figure 2 shows an example tree of a (partial) sce-

nario suite, covering 43 pairs of value combinations with 6 states

in 3 scenarios. The top scenario (black) takes the bot to the box

in (3, 3), advancing first in the X axis. The second (red) advances

the bot in the Y axis first. The third scenario (green) advances the

1 spec DeliveryBot
2

3 // The location of the next box to pick up
4 env Int(0..5) boxLocX; env Int(0..5) boxLocY;
5

6 // The speed of the deliveryBot
7 sys Int(1..3) motorSpeed;
8 // The deliveryBot's location
9 sys Int(0..5) botLocX; sys Int(0..5) botLocY;
10 // Is the deliveryBot carrying a box
11 sys boolean hasBox;
12

13 // assumptions and guarantees
14 ...
15 // Guarantee: The box can only be dropped at (0,0)
16 gar G ((botLocX != 0 | botLocY != 0) & hasBox) ->
17 next(hasBox);
18 ...

Listing 1: Example DeliveryBot specification (excerpt). The
complete specification is available in [2].

bot at a different motorSpeed to a different box location. The sec-

ond scenario only adds a single pair of new values to the coverage

(botLocX = 0,botLocY = 3). The third covers 12 new pairs.

Importantly, the engineer could then execute all the scenarios

in the scenario suite, and it is guaranteed that each pair of values

from T will be covered by at least one state in at least one scenario.

In this small example, for pairwise coverage of all variable values,

our algorithm outputs a suite of 21 scenarios and a total of 46 states.

Note that the scenario suites we generate for our DeliveryBot in-

clude no more than 50 states, which are enough to provide pairwise

coverage of the more than 8000 reachable states of the controller.

But do they suffice for detecting defects in the specification?

Detecting Specification Defects
As mentioned in the introduction, we aim to help engineers in

detecting two general kinds of specification defects. The first hap-

pens when the specification might not correctly express the
intentions of the engineer who wrote it. Indeed, while writing
our example specification, we accidentally used & instead of | in the

safety guarantee in line 16. This resulted in a controller that may

drop a box in any cell in column 0 or in row 0, and not necessarily

only in (0, 0). Thanks to the use of CC, this issue was quickly found:

as we executed the scenario suite, we observed that in one of the

scenarios the box was dropped at an incorrect spot, i.e., not in (0, 0)

as intended. Importantly, pairwise coverage guaranteed that this

wrong behavior will manifest in at least one of the scenarios.

The second type of specification defect happens when the engi-
neer may not know or understand the real environment in
which the system would run. Indeed, in our DeliveryBot exam-

ple, there was a physical limitation that we were not aware of: if the

robot carries a box at motor speed 3, the box falls off. Again, even

with only pairwise coverage, our algorithm guarantees that the

scenario suite it generates includes a state in which the robot holds

a box and is moving at motor speed 3, because this is a combination

of values from only two variables, motorSpeed and hasBox.
Thus, when executing the scenario suite, this wrong behavior is

indeed manifested.

Example 3.2. In Fig. 2, the first scenario (black) is 4 states long.

Its last state drives the bot at motorSpeed 3 while holding a box. It

will make the box fall and thus manifest the defect.

Overall, our running example demonstrates how the scenario

suite generated with our approach helped find specification defects

of the two kinds we consider. The complete specification and exam-

ple executions (simulation videos) showing how these two defects

were found are available in [2].

4 A CC ALGORITHM FOR SYMBOLIC
CONTROLLERS

Main Technical Contribution
Our algorithm is an iterative greedy algorithm. At each step it

chooses a new assignment to environment inputs in order to cover

as many new valid tuple combinations. This is achieved by main-

taining BDDs of all of the uncovered reachable states. At each step

the algorithm starts with all possible successors in the symbolic con-

troller and reduces the possibilities until one variable assignment is
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chosen. Once a full coverage is reached, which is signalled when all

the uncovered BDDs are false, the algorithm returns the scenario

suite, represented as a tree of states, each of which is an assignment

to all variables, environment inputs and system outputs.

Algorithm Inputs
The algorithm receives as input the symbolic controller SC for

which to generate the scenario suite, and a set, T , of tuples of
variables from the symbolic controller to cover.

Example 4.1. For the delivery robot in Lst. 1, the re-

quirement to cover all pairs for all variables would result

in T = {⟨boxLocX,boxLocY⟩, ⟨boxLocX,motorSpeed⟩,
. . . , ⟨botLocY,hasBox⟩}, consisting of all the pairs of the six

variables, totalling |T | = 15.

The symbolic controller, SC , is required to support the

following functions: дetReachable(SC), which returns a BDD

containing all the reachable states of the controller, and

дetSuccessors(currentStates, SC), which receives as input a BDD,

currentStates , representing a set of states, and returns a BDD rep-

resenting a set containing all of the successors of currentStates .
For simplicity, we first present Alg. 1 without the lines marked

in blue (without lines 9-14, 23-26, 28). We explain the blue lines at

the end of this subsection.

Initialization
Throughout its execution, the algorithm maintains for each t ∈ T
a BDD uncov(t), which represents all the reachable but yet uncov-

ered states using the variables in the tuple t . We first compute all

reachable states of the symbolic controller (line 1). Then, uncov(t)
is initialized in line 3. Projt (bdd) is a function that projects a BDD

on a set of variables t . We also initialize chosenTree , which will

contain the final scenario suite (line 5). As explained previously,

the resulting scenario suite will be represented as a tree of states,

in which each path from the root of the tree to a leaf is a scenario.

The Main Loop
The algorithm includes a main loop, from line 7 to line 35. Each

iteration of the main loop adds one node, chosen, to chosenTree
(i.e., adds one state to the scenario suite).

It starts with obtaining the union of all possible successors of all

previously chosen states, as shown in line 8. The algorithm then

iterates over all the uncovered BDDs in decreasing order of the

satisfy count of each BDD (line 17). If uncov(t) ∩ collected , ∅ we
can remove all successors that do not cover any assignments of the

current tuple t . This simple greedy heuristics allows us to quickly

focus on useful possible successors, i.e., ones that will add to the

required coverage. Iterating over the BDDs in decreasing order of

satisfy count is a heuristic to help choosing an assignment that

satisfies more combinations [45].

Finally, we choose one of the remaining successors at random

(line 22), add it to the results tree (line 27), and update uncov(T )
in order to remove all variable combinations covered with our

current choice (line 30). We also remove tuples that are already

fully covered, as shown in line 32, as they are no longer needed.

Once all tuples are covered (as guaranteed when using the blue

lines, see below), the algorithm returns the chosen states as a tree,

where each child node represents a successor of its parent. The

returned tree represents the scenario suite.

Algorithm 1 Compute Scenario Suite

input: The symbolic controller SC to cover, and coverage re-

quirements, given as a set T of tuples of variables to cover.

/* Initialization */

1: reachable ← дetReachable(SC)
2: for t ∈ T do
3: uncov(t) ← Projt (reachable)
4: end for
5: chosenTree ← ∅
6: chosen ← root

/* Main Loop */

7: while T , ∅ do
8: successors ← дetSuccessors(orAll(chosen), SC)
9: allUncov ← orAll(uncov)
10: reachLayers ← ∅
11: if successors ∩ allUncov = ∅ then
12: reachLayers ←

playReachability(orAll(chosenTree),allUncov, SC)
13: successors ← lastLayer (reachLayers)
14: end if
15: collected ← successors
16: Sort T in decreasing order of satCount(uncov(t))
17: for t ∈ T do
18: if uncov(t) ∩ collected , ∅ then
19: collected ← uncov(t) ∩ collected
20: end if
21: end for
22: chosen ← satOne(collected)
23: if reachLayers , ∅ then
24: path ← f indPath(reachLayers, chosen)
25: chosenTree ← append(chosenTree,path)
26: else
27: chosenTree ← append(chosenTree, chosen)
28: end if
29: for t ∈ T do
30: uncov(t) ← uncov(t) ∩ ¬chosen
31: if uncov(t) = ∅ then
32: T ← T \ t
33: end if
34: end for
35: end while
36: return chosenTree

Example 4.2. Consider the first scenario (black) in Fig. 2. In the

first iteration, the algorithm looked at all possible initial positions

and chose the best one (based on the heuristics in line 16). In the

second iteration, the algorithm looked at all possible initial positions

and all successors of the previously chosen state and chose the best

variable assignment to add to the tree, based on the same heuristics.

In the third iteration, the algorithm chose a successor to the state

chosen in the first iteration, thus creating a new branch in the

tree (red). In the forth iteration, the algorithm chose a new initial

position, thus creating a new branch in the tree (green). We see

how in each iteration, all possible choices that can be appended to

the state tree are considered and the best one is chosen greedily.
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Adding Reachability Games
One problem with Alg. 1 as presented without the blue lines, is

that when the algorithm reaches a state that has no useful succes-

sors (i.e., no successor covers a tuple that was not yet covered), it

aimlessly adds more states that do not improve the coverage. We

mitigate this problem by adding reachability games.

We shall now explain the blue lines in Alg. 1. Lines 9-14 add a

reachability game that occurs whenever the algorithm reaches a

point in which all possible successors do not improve the coverage

of the scenario suite. The check occurs in line 11. The reachability

game is played from the set of all previously chosen states (in-

cluding the root position) to the set of all of the uncovered states

(line 12). The set of all previously chosen states isorAll(chosenTree),
which returns the union of all BDDs stored in chosenTree . We

define playReachability(f rom, to, SC) as a function that plays a

reachability game and returns a list of BDDs L1, L2, . . . , Lk called

layers. The returned layers satisfy L1 ⊆ f rom, Lk ⊆ to and

∀i ≥ 1 Li ⊆ successors(Li−1). The last layer will serve as the

defacto set of successors for the current iteration.

We reach line 24 when a reachability game was played, after

a successor is chosen. Instead of just appending the chosen state,

we choose a path containing a single variable assignment at each

step from the original successors to the effective successors, and

appended to the scenario suite tree. The path is appended to the

node whose successor is the first state in the chosen path (line 25).

Soundness, Completeness, and Complexity
Algorithm 1 is sound, i.e., it stops and returns a valid tree of

states. It is also complete w.r.t. the reachable states of the controller,

i.e., the returned tree provides a full coverage of the variables in

the given set of tuples T that are reachable.

Theorem 4.3 (Alg. 1 is Sound and Complete). For every sym-
bolic controller SC , and every set of variable tuples to cover T , Alg. 1
stops and returns a valid tree of environment inputsCT , which covers
all reachable tuples in T . Formally:

∀c ∈ CT : дetChildNodes(c) ⊆ дetSuccessors(c, SC)

∀p ∈ дetReachable(SC) ∩T : ∃C ⊆ CT s .t . p ⊆ C

We consider time complexity per node in the returned chosenTree :

Theorem 4.4 (Alg. 1 Time Complexity). The time complexity
of Alg. 1 is O(m |T |loд |T |) BDD operations, wherem is the number of
states in the generated scenario suite, i.e.,m = |chosenTree |.

The proofs appear in supporting materials [2].

5 IMPLEMENTATION AND EVALUATION

Implementation We implemented the CC algorithm on top of

Spectra [1, 35], using BDDs [12] via CUDD 3.0 [46], which supports

multi-valued variables. We maintain the uncovered combinations

of T (see Sect. 4) in a sorted set of BDDs. Each BDD represents the

uncovered combinations of one tuple of variables. The sorting of the

set according to satCount (Alg. 1 line 16) is done only when a BDD

is changed, and only for that BDD, resulting in less comparison

operations than expected with a naive approach. In addition, the

implementation maintains the current number of combinations left

to cover, enabling us to stop the algorithm based on the coverage

percent achieved so far, e.g., the engineer may request that the

algorithm stops at 95% coverage.

The implementation is integrated as add-on to the Spectra IDE,

where the engineer can write a specification, synthesize a controller,

generate a scenario suite, and execute it, all within Eclipse.

Our evaluation consists of two parts. First, a technical evalua-

tion that focuses on a comparison of our CC approach to random

scenario generation over relevant criteria. Second, a user study that

focuses on evidence for the effectiveness of our work in helping

engineers expose bugs in the specifications they write.

5.1 Technical Evaluation
All specifications used in our evaluation, the raw data we collected,

and means to reproduce our experiments, are available in [2]. We

consider the following research questions:

RQ1 How does our CC algorithm compare to random generation

w.r.t. scenario suite size and achieving partial coverage?

RQ2 How does our CC algorithm compare to random generation

w.r.t. the potential of exposing specification defects?

RQ3 How well does our CC algorithm scale with larger specifica-

tions and with more tuples to cover?

Corpus of Specifications
We use two sets of benchmarks from the literature. First, specifi-

cations from the SYNTECH benchmarks [22], available from the

Spectra website. These specifications were written by 3rd year CS

undergrads in class projects taught by the authors of [22]. The

benchmarks have already been used in the literature [15, 36, 40].

From these benchmarks, we selected the largest ones that we were

able to synthesize a controller from within a timeout of 5 hours.

Thus, we experimented with four specifications. Tbl. 1 shows the

number of multi-valued variables (as they appear in the specifica-

tion), Boolean variables (after encoding), assumptions, guarantees,

and reachable states for each of these.

Second, we use IBM’s GenBuf [9], which has been extensively

used in the GR(1) literature for evaluation [14, 16, 22, 27]. GenBuf

is parametric and therefore suitable for examining scalability.

Validation
We implemented a test that iterates over a given scenario suite

tree and makes sure that it achieves a full coverage, independent

of the implementation that generated the scenario suite. We ran

this test over the scenario suites created by our algorithm on all the

specifications in our corpus. In addition, we have created a number

of synthetic specifications and manually checked that the generated

scenario suite is correct. This validation increases our confidence

in the correctness of our implementation.

Experiment Setup
Our setup uses Spectra [35] for the synthesis of the symbolic con-

trollers. We then apply our CC algorithm on the symbolic controller,

computing the scenario suite based on the required configuration.

In order to account for nondeterminism in the BDD library, we ran

each experiment 10 times and reported averages.

Random Scenario Generation Algorithm
For the comparison with random generation, we define the ran-

dom algorithm as follows. In each iteration, the algorithm picks a
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Figure 3: Comparison of size and coverage between CC algorithm
and random generation using GenBuf10 with pairwise coverage.

random unvisited state that is a successor of one of the previously

chosen states, and adds it to the scenario suite. This random algo-

rithm is better than a naive random algorithm, as it never picks a

previously visited state. Most importantly, its choices never violate

the assumptions and guarantees in the specification. Finally, for

each specification, we limit the random algorithm executions to

twice the size of the scenario suite produced by our algorithms.

This way we can compare the rates at which our algorithm and the

corresponding random approach achieve the required coverage. We

ran the random algorithm 10 times and reported average results.

Results for RQ1: Size and Coverage against Random
Figure 3 shows a comparison of size and coverage between our

CC algorithm and the random algorithm we described above. We

show the results for a representative specification; the results are

very similar for all specifications in our corpus. Complete results

are available in [2].

To answer RQ1: Our algorithm achieves full coverage with a

rather low number of states. The random algorithm doesn’t

achieve full coverage even within twice the size of the scenario

suite for which our algorithm already achieved full coverage.

Our algorithm achieves most of the coverage during the first

iterations; the last iterations are used to achieve the last few

reachable combinations. If the cost of using a large suite is too

high, one can use a smaller suite and still enjoy a high coverage.

Mutation Testing and Results for RQ2
Mutation testing [5, 25] is a well-known approach to evaluate

the quality of a test suite. To estimate the effectiveness of our CC

algorithm at exposing defects in real-world specifications, we use a

novel mutation approach for specifications, based on a mutation

operator that removes a single safety guarantee. This operator

simulates cases where the specification is missing a guarantee.

Example 5.1. An example for a defect that is the result of a

missing safety guarantee is the second defect presented in Sect. 3.

The defect is that whenever the bot holds a box and is at motor

speed 3 it drops the box. Its root cause is a missing safety guarantee:

G !(motorSpeed == 3 & hasBox).

Thus, for each specification in our corpus, we iterate over each

non-redundant safety guarantee
1
and synthesize a symbolic con-

troller without it. We use our algorithm to generate a scenario suite

and then generate a scenario suite of the same size using the ran-

dom algorithm. Finally, we examine both scenario suites, to see if

they contain a state that violates the “left-out” safety guarantee,

thus “killing the mutant" and finding the defect.

Note that in our setup of specifications, one cannot use existing

well-known mutation operators that apply to code, as these may

create unrealizable specifications or specifications with stronger

guarantees, both of which will not be useful in our case. We have

to be sure that the mutated specifications have weaker guarantees.

The rightmost columns of Tbl. 1 present the average mutation

score for the different specifications. We see that in almost all cases,

the mutation score of our CC algorithm is better compared to the

random algorithm’s generated scenario suite of the same size.

To answer RQ2: We observe an average improvement by a factor

of 1.7 in mutation score for our CC algorithm compared to the

random algorithm. This evidence suggests that our algorithm

has higher potential for exposing specification defects.

Results for RQ3: Performance and Scalability
Table 1 presents the results of our experiments on different spec-

ifications with pairwise coverage.
2
For each specification we show

the number of multi-valued variables as they appear in the specifi-

cation (V), Boolean variables (BV), assumptions (A), guarantees (G)

and the number of reachable states in the controller, the number of

variable tuples we need to cover |T |, the total number of different

reachable combinations for each tuple in T , the number of states

in the scenario suite tree (nodes), the number of scenarios in the

scenario suite tree (leafs), and the running time of the algorithm.

We analyze scalability in terms of the number of variables in

the specification, which affects both the number of reachable states

and the number of tuples to cover, as shown in Tbl. 1.

To answer RQ3: Overall, the algorithm scales well when increas-

ing the specification size. The scenario suite size grows much

slower than the size ofT and the size of the specification. In terms

of running time, the algorithm does run slower when scaling up.

Threats to the Validity of the Results
First, symbolic computations are not trivial and our implemen-

tation may have bugs. To mitigate this, we performed a thorough

validation, see above. Second, even though the algorithm we deal

with is deterministic, JVM and CUDD garbage collection add vari-

ance to running times. We therefore repeated each experiment 10

times and report average values. CUDD dynamic reordering may

result in additional variance, so we used CUDD’s default dynamic

reordering, as common in related work, e.g., [10, 36]. Third, our

algorithm may achieve different results based on the synthesized

controller. To alleviate this, we used a variety of different specifica-

tions, varied in number of variables and reachable states. Fourth,

1
According to [37], many specifications include vacuous guarantees. By definition, a

mutation that removes a vacuous guarantee is useless.

2
Pairwise, i.e., t = 2, is the most common in the CC literature. In supporting materials

we include results for t = 3 as well. Other values are not common in the literature.
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Table 1: Performance, generated scenario suites sizes, and mutation scores

Spec & Controller Info Tuples Info Generated Scenario Suite Mutation Score

Specification #V #BV #A #G # Reach. States # Tuples # Tuple Comb. #States #Scenarios Time (sec) CC Rand

AirportShuttle (t=2) 36 38 14 21 3.96E+09 630 2,672 93 27 6.09 92.7% 77.3%

Junction2 (t=2) 36 44 27 51 7.93E+13 630 3,087 33 17 44.08 71.4% 21.4%

RoboticArm (t=2) 21 52 17 28 3.93E+06 210 2,961 110 67 97.19 86.2% 92.4%
SimpleVehicle (t=2) 34 53 32 49 1.77E+16 561 4,283 136 73 1205.20 84.5% 52.5%

GenBuf5 (t=2) 24 24 28 81 2.31E+05 276 1,085 36 12 0.65 83.1% 53.1%

GenBuf10 (t=2) 35 35 43 152 4.20E+07 595 2,326 100 41 4.48 89.0% 39.7%

GenBuf20 (t=2) 56 56 73 368 2.80E+11 1,540 5,961 172 90 59.55 92.8% 17.0%

we do not know if the mutation operator we use is representative of

mistakes engineers would make in practice. Our operator is reason-

able but rather coarse. In the future, we may try using human-like

mistakes or refined LTL mutations. Finally, our corpus is limited to

a small set of benchmarks. It is thus important to note that all pub-

licly available specifications for reactive synthesis were published

in final form only, with no documentation about earlier versions

and the defects they may had (the SYNTECH benchmarks include

multiple versions, but no defects documentation). Therefore, we

are unable to report on our success in detecting real defects in

these specifications. Instead, we evaluated the effectiveness of our

work over existing benchmarks using a mutation approach. We

complement this evaluation with the user study we present below.

5.2 User Study
To better evaluate the applicability of our approach in practice

and to further understand its ability to help engineers expose real-

world bugs, we conducted a user study where we provided the CC

scenario generation tool to students and asked them to use it in

order to try to find bugs in a specification they wrote. We ask the

following research questions:

RQ1 How may engineers validate their specifications for synthe-

sis without the CC scenario generation tool?

RQ2 Can engineers use the CC tool to find bugs in their specifi-

cations and detect bugs that were not found beforehand?

User Study Setup
We conducted the study on 10 pairs of students who partic-

ipated in a semester-long workshop class (20 students in total).

All participants were senior undergraduate students with a strong

background in programming and computer science: they had al-

ready completed classes with Python, Java, and C projects, and took

courses in data structures and algorithms. We chose to conduct our

study on students since reactive synthesis is not widely used in the

industry and since some previous literature shows that in many

cases, students are not a significant threat in empirical software

engineering studies [26]. Moreover, more than 50% of the partici-

pants already have student positions in the industry as software

engineers. As compensation, and with approval of the university’s

IRB committee, we offered four bonus points for the workshop’s

final grade for those agreeing to participate in our study.

The user study was done as part of the last workshop assignment;

at this stage, students already had experience with Spectra since

they had already wrote several specifications, e.g., for a cleaner

robot, synthesized controllers, and simulated their executions.

The user study consisted of two parts. In the first part, we gave

the students a task to write a specification describing the behavior of

a junctionwith cars, pedestrians, and traffic lights. The environment

controls the inputs, which are sensors that report on coming cars

and pedestrians who ask to cross (as well as on the existence of fog

or a police request to manually control the traffic lights behavior

etc.). The system controls the outputs, which set the colors of the

different traffic lights (red or green). We provided the students

with abstract guidelines on how the junction should work (e.g., the

junction should be safe and not allow accidents, every pedestrian

that wants to cross will eventually be able to cross, emergency

vehicles have priority over ordinary vehicles etc.); the guidelines

left a space for flexibility in the way the specification is written.

As a baseline, however, we asked participants to write a correct

specification that is also as optimal as possible (for example, a

simple traffic light system that changes its lights in a cyclic order

while ignoring environment input was forbidden).

We also provided the students a Java-based GUI skeleton of the

junction to easily run their synthesized controller and observe its

behavior. This GUI didn’t mock or simulate specific behaviors, but

just provided skeleton code to display the junction’s current state

graphically; participants were free to choose whether and how to

use this GUI to validate the correctness of their specifications.

Participants had three weeks to complete the assignment. After

three weeks, they submitted their correct implementation and a

document that explained their design decisions and their interpre-

tation of the more abstract parts of the assignment. In addition, we

asked students to explain in this document what actions they took

to validate the correctness of the submitted specification and of

previous specifications they wrote as part of the workshop. Notice

that participants were unaware of the CC feature at this stage, and

they submitted a specification that they considered correct and was

ready for our review and grading.

After collecting all data from the first part of the study, we con-

tinued to the second part and presented the CC tool in one of the

workshop’s class meetings. Then, we asked participants to validate

their specifications again, this time, with the CC tool they saw in

class. We instructed the students to report all bugs and unwanted

behaviors they detected at this stage. All the communication with

participants and the documentation was done using Slack.

Results for RQ1:Means used by participants to validate their
specifications before we introduced them to our CC tool

To answer RQ1, we conducted a thematic analysis [11] to identify

common validation strategies. From the documents and comments

we received from participants, we can see that they invested sig-

nificant time and thought into validating the correctness of their

specifications, using various validation strategies.

The most common validation strategy mentioned by all the par-

ticipants was implementing a random simulation that mocks up

the environment according to their understanding of the problem.
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Note that implementing an effective random simulation of the

environment is not trivial, because it has to satisfy the assumptions

written in the specification. When the environment violates an

assumption, the Spectra execution engine outputs a warning to the

console and from then on, nothing is guaranteed about the behavior

of the controller. With our CC approach, the generated scenario

suite is guaranteed to never violate the environment assumptions

from the specification.

After implementing the random simulation, teams used the syn-

thesized controller and observed its behavior against the random

environment they created. Then, when they observed an unex-

pected behavior, they tried to print the current state of the system

inside the simulation in order to debug the problem (we use Tx to

denote that team-x mentioned it):

“When we saw in the simulation that something isn’t behaving
as we expected it to, we added system variables in order to
"monitor" certain parts of the specification. In one of the times
we did this, we added a system variable that is always equal
to one of the counters so we can print it out every turn from
the java code and check if it resets when it’s supposed to while
looking at the GUI interface.” (T6)

However, many participants understood that such validation is

insufficient since some behaviors and edge cases are rare and are

not easily reproducible by simply observing a random simulation

(T4,T5,T6,T9,T10):

“. . .we used mainly the GUI. Each and every time, we were
looking for the specific scenario we wanted to check to happen,
and then once it happened, we checked whether it worked as we
expected it to work or not. One of the main difficulties in this
method was that some problems . . . only occurred once in many
runs - that made us believe that things are working properly
and we proceed with them, and only, later on, we found out that
they are wrong.” (T9)

To deal with this problem, the teams used additional strategies.

T10 tweaked the environment’s randomness in such a way that it

will make otherwise rare events more frequent. T4 and T6 wrote

specific scenarios, i.e., implementing a concrete behavior of the

environment simulation, which mocks up edge cases:

“. . .when we wished to test something specific, we wrote specific
java code in order to make it happen, for example, on the cleaner
task, we wrote specific code to make sure the robot would pass
in the orange zone” (T4)

Another team added features incrementally and ran the simula-

tion after each feature they added to inspect it’s correctness:

“. . . after every feature we added (freezemode, road constructions,
fog), we tested it again while observing the simulation . . . ” (T5)

Results for RQ2: CC helped participants expose bugs that
they did not find without it

While using CC, i.e., in the second part of the user study, 9

out of 10 teams found bugs that they did not found before using

the methods described in the answer for RQ1. We received good

feedback from all teams on the usability of the tool:

“ It was nice to see how the tool works, and actually prints a
snapshot of all the variables in each state. This is really helpful
and is exactly what we wished for when we were working on
the Junction project at the first place. We know for sure it would
have saved us lots of time.” (T2)

As one detailed representative example, we consider T4. Before

using CC, T4 validated their junction specification with many ran-

dom and weighted random inputs and even wrote custom Java code

to describe different scenarios they wanted to validate. Their speci-

fication is also quite complex, it has 55 variables, it spans over 432

lines, 51 guarantees, 36 assumptions, and it uses several advanced

Spectra language features such as counters [35].

After running CC, T4 reported on two bugs they did not find

beforehand. For the first bug they found, one of the scenarios gener-

ated by the CC algorithm showed a car turning west, even though

pedestrians were crossing at the time, as seen in Fig. 1 (B). Here is

how T4 describe the reason for the bug:

“The bug was we had confused the left turning south vehicles
lane environment variable with the right turning south vehicles
lane environment variable.” (T4)

Then, T4 describe how quickly they found the bug using CC:

“When working with the previous simulator, before the testing
tools, our main way of convincing ourselves that the spec is
right, was to let sim run for some time, look at the GUI, and see
that everything looks as we think it should look. Because sim is
constantly randomly adding vehicles to the screen, and because
there are many ’objects’ in this environment that we need to
keep track of (a lot of vars), and therefore many different com-
binations of vars . . .we let this basic mistake remain present in
our project without us noticing it until now. CC made us realize
it very very quickly, and this, we think, shows the qualitative
difference between ’playing’ by ourselves with the simulation to
find bugs in GUI against an automatic tool that systematically
creates for us tests to find bugs . . . ” (T4)

This bug is an example of the first type of bug, in which the

specification does not express the intention of the engineer who

wrote it. In a similar bug that was found using CC, the simulator

showed a non-emergency car given green light and crossing while

there was fog, which is a behavior that is not allowed according to

the assignment’s instructions. The GUI’s state can be seen in Fig. 1

(A). This bug was also a bug of the first type and was a result of a

mistake in the specification.

Note that when using CC, different teams found different bugs

related to different aspects of the specification. For example, T5

detected weird behaviors related to their initial assumptions:

“After running the test suite, we observed some unexpected be-
havior. . . .whenever a new test case started . . . there were strange
behaviors such as a car running over a road construction or two
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cars colliding. After investigating, we also noticed that on each
of this test states freeze mode was on. This made us realize that
we didn’t handle correctly the scenario where freeze mode is on
in the initial state . . . if in the initial state freeze mode is on, then
a collision can occur. After adding the following assumption, the
unexpected behaviors didn’t occur anymore” (T5)

In our user study setup, where the synthesized system was exe-

cuted against a Java simulation written by participants themselves

and not against a real environment, it was not possible to find bugs

of the second type (where the engineer does not fully understand

the requirements or the real environment in which the system will

run). However, many teams found undesired behaviors in their

Java simulator during the execution of the CC generated scenarios,

which may be viewed as bugs of the second type.

Threats to Validity
To ensure external validity, we chose a target population

that represents future potential tool users. Although participants

used the tool only for one task, we believe the result could be gener-

alized since it is a rather complex task in our domain. Furthermore,

since the task’s requirements had a place for interpretation, partic-

ipants found different bugs in their specifications using the tool,

which relate to their different design choices. Our study spanned a

semester-long workshop class but included only 20 students. In the

future it would be beneficial to include more participants and thus

improve the expected generalizability of the results. To safeguard

internal validity and make sure participants developed correct

implementations, we put a special emphasis on correctness in this

particular task, and made certain participants would not be aware

of the new tool capabilities until we introduced it.

6 RELATEDWORK AND DISCUSSION

Combinatorial Coverage Combinatorial coverage is a well-

known coverage criterion, applied mainly in the context of func-

tional testing [13, 20, 21, 24, 29, 51, 52]. Its rationale is supported

by much empirical evidence [6, 30, 31, 42, 44, 49, 53, 55]. Different

algorithms to achieve CC have been suggested, e.g., [18, 19, 32, 54],

and it is supported by several academic and commercial tools.

As a starting point for our algorithm we chose the algorithm

of [45], whose use of BDDs makes it a good fit to deal with the

symbolic representation of the synthesized controllers we consider.

However, we altered the construction from [45] to handle the state-

ful nature of the controller. Note that existing algorithms, including

the one of [45], are unsuitable for the stateful nature of the problem

we have. In our setup, each generated scenario is not one state but

a sequence of states, and the constraints change after the addition

of every state, based on its set of valid successors (described sym-

bolically). Moreover, to be efficient and complete, we have to use

reachability games as part of the algorithm (see Alg. 1 blue parts).

Some previous works apply CC to stateful scenario suites [3, 41].

They apply CC to sequences of events, and are limited to event-

based systems, defined over a set of events alphabet. In contrast,

our work applies to a different computation model of a reactive

controller, defined over a large set of input and output variables.

Finally, fundamentally, unlike all works cited above, we apply

CC to a system in order to find defects in the specification it was

synthesized from, not to test its correctness w.r.t. a specification.

Validating the Correctness of Specifications for Synthesis
Some works deal with problems in specifications for synthesis,

e.g., w.r.t. unrealizability [14, 27, 36, 38]. Yet, no focus has been

given to the specification’s correctness w.r.t. the engineer’s inten-

tion and knowledge of the requirements and environment in which

the system would run. To our knowledge, our work is the first to

attempt at validating correctness in this regard. Note that our work

is incomparable to the works that deal with unrealizability. For un-

realizable specifications no implementation exists, so there are no

controllers to explore. Our work applies to realizable specifications.

These may still be incorrect, which is where CC exploration enters.

7 CONCLUSION
We presented an approach for validating the correctness of a re-

active system specification for synthesis, via systematic scenario-

based combinatorial exploration of the behaviors of a controller

that was synthesized from it. We presented an algorithm designed

to achieve a small scenario suite by using heuristics and a greedy

approach. We used benchmark specifications and mutations to eval-

uate our algorithm against random scenario generation. We used

a user study with students who used our work to validate their

specifications in order to demonstrate its potential effectiveness in

detecting real bugs in specifications for synthesis.

Validation by exploration requires the scenarios to be executed

and monitored for unexpected behavior, which could be a human

intensive task. This further motivates us to develop an approach

that minimizes the number of scenarios and states to be executed.

For performance, we take advantage of the symbolic represen-

tation of the synthesized controller and define and implement our

CC algorithm symbolically. Many synthesizers use a symbolic rep-

resentation for the controllers they output. In this sense, while we

implemented our work on top of Spectra, taking advantage of its

synthesizer, its generic execution mechanism for controllers, and its

benchmark specifications, our algorithm is not limited to Spectra.

We consider directions for future work. First, the application of

other approaches to validating the correctness of specifications for

synthesis. For example, complementing the CC, global exploration

approach, with a local, property-based exploration approach, where

the input for scenario generation are regular expressions that a

generated scenario has to satisfy. Second, we consider future work

on improving the quality of the application of mutations in our

context, e.g., altering guarantees with human-like mistakes or using

refined LTL mutations [7, 23, 47]. Third, to address scalability, we

consider means to replace our use of the symbolic controller with

Spectra’s just-in-time controller [39] .
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