
Supporting Materials for
Inherent Vacuity for GR(1) Specifications

Shahar Maoz
Tel Aviv University

Tel Aviv, Israel

Rafi Shalom
Tel Aviv University

Tel Aviv, Israel

Abstract—This document provides supporting materials for the
ESEC/FSE’20 paper by the authors titled “Inherent Vacuity for
GR(1) Specifications” [1]. We provide additional observations
and examples for how cases we did not define as a vacuity in the
paper, indeed do not preserve LTL semantics.

I. EXAMPLES

Below we present a comprehensive set of example speci-
fications with specification elements and domain values that
should not be considered vacuous. Note that the following
exaples are meant to demonstrate a mathematical property. We
do not consider them to be similar to specifications written by
engineers. Moreover, note that we sometimes use LTL formulas
with integer (non-binary) variables without explicitly translating
them, e.g., we may write GF x ≥ 2 where the domain of x is
{1, 2, 3} without using two binary variables for x.

A. Examples for Specification Elements

First, recall that our GR(1) vacuity cases definitions are
asymmetric in their premise-sets. While system elements
have environment elements in their premise-sets, environment
elements that are not justices do not have system elements
in their premise-sets. This asymmetry is a consequence of
GR(1)’s asymmetry between the environment and the system.
Example 1 below demonstrates that it would be incorrect
to include initial system assertions in premise-sets of initial
environment elements.

Example 1 (Environment initial assertion implied by system
elements: not a vacuity). Consider a specification
〈{a}, ∅, D,Me,Ms〉 with one Boolean environment variable
a, and BMe = BMs = {a}. In this specification, the initial
assumption a ∈ BMe is implied by the initial guarantee a ∈
BMs

. The specification is realizable, but if we remove the
assumption, it becomes unrealizable, clearly not preserving the
semantics.

Second, note that safety element vacuities are defined
using a propositional logic implication, without the temporal
operator G (or any other temporal operator). Example 2 below
demonstrates that it would be incorrect to consider implication
between safeties with the temporal operator G, i.e., to use LTL
implication rather than propositional implication.

Example 2 (LTL implication of safeties by other safeties: not
a vacuity). Consider the specification 〈{a, a1}, ∅, D,Me,Ms〉,

where a and a1 are Boolean environment variables, BMe
=

{G (a1 → Xa),G ¬a,G ¬a1}, and BMs = {G ¬a1}. In this
specification, the assumption G ¬a1 ∈ BMe is LTL-implied
by the other two safety assumptions. The specification is
realizable, but if we remove this assumption, the specification
becomes unrealizable. This is the case because unlike before,
the environment can fail the system by setting a1 to true. Clearly,
the semantics has changed.

Example 2 demonstrates that LTL implication (that of infinite
traces) fails for vacuity even if the implication is strictly from
safeties, i.e., no justices are involved. However, it is restricted to
a safety assumption that is LTL-implied by safety assumptions.
Example 3 shows a simple specification for which the LTL
equivalence of the strict realizability formula does not hold
for safety guarantees that are LTL-implied by other safety
guarantees1.

Example 3 (LTL implication of safety guarantees: not a vacuity
(1)). Consider the specification 〈{a}, {b}, D,Me,Ms〉, where
a and b are Boolean variables, BMe = {G a}, and BMs =
{G b,G Xb}. Then G b →LTL G Xb. Since there are no initial
assertions and justices, the strict realizability formula of the
specification is easily simplified to ϕsr = G((H a)→ (b∧X b))
and that of the specification without G Xb to ϕsr

v = G((H a)→
b). Consider also the computation σ = {a, b}∅ω, then σ, 0 |=
H a and σ, 0 |= b but σ, 0 6|= b ∧ X b. Note that this means
σ, 0 6|= (H a)→ (b∧X b) thus σ 6|= G((H a)→ (b∧X b)) and
we have σ 6|= ϕsr. On the other hand σ, 0 |= (H a)→ b and
since σ, i 6|= H a for all i ≥ 1 we have σ, i |= (H a) → b for
all i ≥ 0, thus by definition of operator G, σ |= G((H a)→ b)
or equivalently σ |= ϕsr

v , which proves that ϕsr 6≡LTL ϕ
sr
v .

Example 4 has a more complicated specification for the
same case. It is a stronger example because it shows that the
realizability of the specification is not always preserved.

Example 4 (LTL implication of safety guarantees: not a vacu-
ity (2)). Consider the specification 〈{a, a1}, {b}, D,Me,Ms〉,
where a and a1 are Boolean, D(b) = {1, 2, 3}, and BMe

=
{G ¬a,G (b = 1 → Xa)}, and BMs

= {G (b < 3 → (b <
Xb∧Xb < 3)),G (b = 3),G (b = 3→ Xa1)}. Then G (b = 3) is
LTL-implied by G (b < 3→ (b < Xb∧ Xb < 3)). If we remove
G (b = 3) from BMs , the originally unrealizable specification

1We thank Or Pistiner for providing Example 3.

becomes realizable, because now the system can output b = 1
instead of b = 3. Clearly, the semantics is not preserved.

By changing G (b = 3) to b = 3 in the above example, initial
assertions that are LTL-implied by safeties are not vacuous.

One may wonder if safeties could be implied by initial
assertions as well as safeties. However, since Examples 2, 3
and 4 prohibit LTL implication for safeties, the propositional
implication of safeties from initials would allow declaring G a
vacuous because of a, which is evidently undesirable.

Finally, Examples 5,6 and 7 show that initial assertions
propositionally implied by safeties should not be defined as
vacuous. Example 5 is a cross module example, and Examples 6
and 7 show that such implications within the environment and
system modules respectively do not preserve the semantics

Example 5 (Initial assertions propositionally implied
by safeties: not a vacuity). Consider a specification
〈{a}, {b}, D,Me,Ms〉, where a and b are Boolean, BMe

=
{G b}, and BMs

= {b,G a}. Then b ∈ BMs
is propositionally

implied by b, which is the propositional part of G b ∈ BMe
. The

specification is unrealizable, but if we remove the guarantee
b, it becomes realizable because the system can win with the
initial assignment ¬b. Clearly, the semantics is not preserved.

Example 6 (Initial assertions propositionally implied by
safeties within the environment module: not a vacuity). Con-
sider a specification 〈{a}, ∅, D,Me,Ms〉, where a is Boolean,
BMe = {a,G a}, and BMs = {a}. Then a ∈ BMe is
propositionally implied by a, which is the propositional part of
G a ∈ BMe

. The specification is realizable, but if we remove
the assumption a ∈ BMe

, it becomes unrealizable. Clearly, the
semantics is not preserved.

Example 7 (Initial assertions propositionally implied by
safeties within the system module: not a vacuity). Consider
a specification 〈{a}, {b}, D,Me,Ms〉, where a and b are
Boolean, BMe

= {G b}, and BMs
= {b,G b, b → a}.

Then b ∈ BMs
is propositionally implied by b, which is

the propositional part of G b ∈ BMs
. The specification is

unrealizable, but if we remove the guarantee b, it becomes
realizable. Clearly, the semantics is not preserved.

B. Domain Values Examples
Example 8 demonstrates why LTL implication within a

module is not useful for unreachable domain values, as the
variable a cannot be false in the environment module even
without the assumption G ¬a.

Example 8 (LTL-implied domain value: not a vacuity). Con-
sider the specification 〈{a}, ∅, D,Me,Ms〉, where a is Boolean,
BMe

= {G ¬a,G(a → X a),GF ¬a}, and BMs
= {G ¬a}.

Then G ¬a ∈ BMe is LTL-implied by the conjunction of GF ¬a,
which means that a must be false infinitely often, and by
G(a → X a), which means that if a is true at some point it
must remain true forever. Yet, if we remove the assumption
G ¬a, the system cannot ensure its identical guarantee, and the
original realizable specification becomes unrealizable. Clearly,
the semantics is not preserved.

Finally, domain value vacuities are limited to variables of the
same module (i.e., environment variables values are considered
only using safety assumptions, and system variables values are
considered only using safety guarantees). Even though they
are safeties and Theorem 1 in the paper does not limit safeties
to module variables, it would be incorrect to declare cross-
module variables unreachable, because the limitation should
be imposed on the module that has the variable, as Example 9
demonstrates.

Example 9 (Environment module domain value implied by
the system module: not a vacuity). Consider a specification
〈{a}, ∅, D,Me,Ms〉, with a single environment variable a
whose domain is D(a) = {1, 2, 3}, BMe

= ∅, and BMs
=

{G (a = 1∨a = 2)}. According this specification, the value 3 is
unreachable according to the system module. When removed (or
equivalently we declare BMe

= {G a 6= 3}) the specification
becomes realizable because the environment cannot fail the
system by assigning a = 3.

REFERENCES

[1] S. Maoz and R. Shalom. Inherent Vacuity for GR(1) Specifications. In
ESEC/FSE. ACM, 2020.

