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ABSTRACT
Vacuity is a well-known quality issue in formal specifications, stud-

ied mostly in the context of model checking. Inherent vacuity is a

type of vacuity that applies to specifications, without the context

of a model. GR(1) is an expressive assume-guarantee fragment of

LTL, which enables efficient symbolic synthesis.

In this work we investigate inherent vacuity for GR(1) specifi-

cations. We define several general types of inherent vacuity for

GR(1), including specification element vacuity and domain value

vacuity. We detect vacuities using a reduction to LTL satisfiability,

specialized for the context of GR(1). We further extend vacuity

detection to handle GR(1) specifications that are enriched with past

LTL, monitors, and patterns. Finally, we define a novel notion of

vacuity core, which provides means to localize the cause of vacuity.

We implemented our work and evaluated it on benchmarks

from the literature. The evaluation shows that vacuities are indeed

common in GR(1) specifications, and that we are able to efficiently

detect them and effectively localize their causes. Moreover, our

evaluation shows that removal of vacuous specification elements

may significantly reduce synthesis time.
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1 INTRODUCTION
Vacuity is a well-known quality issue in formal specifications. Vacu-

ity has been studied extensively and implemented in the context

of model checking, where one checks whether a system model

satisfies a specification and vacuity usually means that some ele-

ments of the specification play no role in that satisfaction. Inherent

vacuity is a type of vacuity that applies to specifications without

the context of an existing model, e.g., ones used for the purpose of
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synthesis. Roughly, a specification is inherently vacuous if one or

more of its elements is logically redundant. Inherent vacuity has

been studied theoretically, very generally, in the context of LTL

specifications [20]. However, to the best of our knowledge, it has

not yet been defined, implemented, and evaluated in any concrete

synthesis setup.

GR(1) is an assume-guarantee fragment of Linear Temporal Logic

(LTL) that has an efficient symbolic synthesis algorithm [10] and

whose expressive power covers most of the well-known LTL specifi-

cation patterns of Dwyer et al. [16, 30]. GR(1) specifications include

assumptions and guarantees about what needs to hold on all initial

states, on all states and transitions (safety), and infinitely often

on every run (justice). GR(1) has been recently used in several

application domains, e.g., to specify and implement autonomous

robots [27, 31], control protocols for smart camera networks [37],

distributed control protocols for aircraft vehicle management sys-

tems [36], and device drivers [39]. Several tools support GR(1) syn-

thesis [7, 18, 33, 43].

In thisworkwe investigate inherent vacuity forGR(1) spec-
ifications. Our first contribution consists of the definition of
several types of vacuity for GR(1) specifications, including
specification elements vacuities and domain value vacuities.
Specifically, we take advantage of the structure of GR(1) specifica-

tions and present case-based definitions of vacuous elements and

vacuous domain values. Roughly, a specification element is vacuous

if removing it will not change the semantics of the specification,

and a domain value is vacuous if it is unreachable in any run that

satisfies the specification. The formal definitions of these vacuity

types appear in Sect. 4. We further show how to efficiently detect

these vacuity types using a reduction to a satisfiability problem

over formulas consisting of elements from GR(1) specifications and

of their negation. See Sect. 5.

It is important to note that inherent vacuity (unlike, e.g., unre-

alizability, non-well-separation) is defined not only with regard

to the semantics of the specification but fundamentally also with

regard to its concrete syntax. Thus, two semantically equivalent

specifications may exhibit different vacuities. As a simple example,

although the formulas p → q and (p → q) ∧ (¬p ∨ q) are semanti-

cally equivalent, the first has no vacuous elements while the second

has. Indeed, our definitions and algorithms for vacuity detection

consider not only the semantics of the GR(1) specification but also

its syntax. We consider it to be a unique and interesting aspect of

our work.

Detecting vacuity is important, but by itself not informative

enough. Thus, as a second contribution we present means for
localizing the cause of the vacuity, by computing what we
call a vacuity core, a locally minimal subset of the specifica-
tion that is necessary and sufficient for the detected vacuity.
We compute vacuity cores using a delta debugging approach [44].

See Sect. 6.
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Finally, we extend the scope of inherent vacuity definitions and

detection algorithm to unrealizable GR(1) specifications as well as

to specifications that include, beyond pure GR(1) elements, also past

LTL operators, monitors, and patterns. These extensions are im-

portant because many specifications written during a development

process may be unrealizable and because past LTL operators, moni-

tors, and patterns, help engineers write more concise and readable

specifications [33]. See Sect. 7.

We have implemented all our ideas as an extension of Spec-

tra [33, 42], an open source specification language and tool set for

reactive synthesis. We present an evaluation over benchmarks from

the literature. Our evaluation shows (1) that vacuity indeed
commonly occurs in GR(1) specifications, (2) that our algo-
rithms effectively and efficiently detect the different types
of vacuity, (3) that the vacuity core is effective in localizing
the cause of vacuity, and (4) that controller synthesis run-
ning times are in many cases significantly reduced when a
vacuous element is removed from a specification. See Sect. 8.

Vacuity has been studied in the literature and implemented in

model checkers (e.g., [4, 5, 13, 14, 23, 24, 28, 40]). In the context of

synthesis, however, we are only aware of the theoretical framework

of inherent vacuity [20]. In particular, to our knowledge, our work is

the first to define, examine, and evaluate inherent vacuity for GR(1)

specifications. Note that in the context of model checking, vacuity

is a property of a specification and a model. The model may satisfy

the specification in a vacuous way. Our context is fundamentally

different. We deal with inherent vacuity, which is a property of the

specification alone. Vacuity checks are now a standard component

in commercial model checkers [14]. We believe they will become

standard components in future synthesizers. We discuss related

work in Sect. 9.

2 RUNNING EXAMPLE
As a running example for this paper, we use a lift specification

(see List. 1), which has appeared in several variants in previous

GR(1)-related papers [2, 10, 11, 38]. The specification is written

in Spectra format [33, 42]. We adapted the example by using an

integer value to represent the floor number (i.e., variable f in line

5) instead of one Boolean variable per floor [2], in order to make

the example more concise, intelligible, and scalable. The example is

small and simple, to fit the paper presentation. In our evaluation

we have used larger and more complex specifications, taken from

benchmarks.

The specification models a controller for a three floors lift. The

lift has three request buttons, one on each floor. Requests are rep-

resented by environment variables b1, b2, and b3, which may be

independently true or false. The current floor of the lift is repre-

sented by the system variable f. The environment is required to

initially have no requests (line 8), turn off any granted request at the

next step (lines 11-13), and keep ungranted requests (lines 16-18).

The system is required to start the lift on the first floor (line 21),

and to disallow the lift to move more than one floor at a time (line

24). The system is also required not to move up when there are no

requests (line 27), to eventually grant every request (lines 30-32),

and to make sure every floor is visited infinitely often (lines 35-37).

Are there vacuous assumptions or guarantees in our example

specification? Our tool finds four vacuous guarantees: the three

1 env boolean b1;
2 env boolean b2;
3 env boolean b3;
4

5 sys Int (1..3) f;
6

7 // No buttons are initially pressed
8 asm !b1 and !b2 and !b3;
9

10 // Request is removed when satisfied
11 asm G ( (b1 and f=1) -> next(!b1));
12 asm G ( (b2 and f=2) -> next(!b2));
13 asm G ( (b3 and f=3) -> next(!b3));
14

15 // Request must remain while unsatisfied
16 asm G ( (b1 and f!=1) -> next(b1));
17 asm G ( (b2 and f!=2) -> next(b2));
18 asm G ( (b3 and f!=3) -> next(b3));
19

20 // Lift is initially at lowest floor
21 gar f=1;
22

23 // Always stay at the same floor or move to an adjacent floor
24 gar G (f>=next(f)-1 and f<=next(f)+1);
25

26 // Do not move up when there are no requests
27 gar G (f<next(f)) ->(b1 or b2 or b3);
28

29 // Eventually grant each request
30 gar GF (b1 -> f=1);
31 gar GF (b2 -> f=2);
32 gar GF (b3 -> f=3);
33

34 // Visit every floor infinitely often
35 gar GF f=1;
36 gar GF f=2;
37 gar GF f=3;

Listing 1: Lift controller specification, adopted from [2]

1 // Don 't go down when at first floor
2 gar G f=1 -> next(f)>=f;

Listing 2: Trivial vacuity example

guarantees in lines 30-32, and the guarantee in line 36. Intuitively,

removing any single one of these guarantees, does not change the

specification’s semantics.

Why are these guarantees vacuous? Our tool also provides a

cause for each vacuity in the form of a locally minimal subset of

assumptions and guarantees that imply it. Specifically, each of the

vacuous guarantees in lines 30-32 is directly implied by one of the

guarantees in lines 35-37. The guarantee in line 36 is implied by

the conjunction of the guarantees in lines 24, 35, and 37. Indeed, if

the lift must be on the first and on the third floors infinitely often,

it must also be infinitely often on the second floor.

Finally, we demonstrate an additional vacuity by adding List. 2,

which contains a guarantee that prevents the lift from going down

when it is on the first floor. This guarantee is vacuous because

the variable f already has 1 as a minimal value, regardless of any

assumption or guarantee. We call such vacuities trivial vacuities.

Our tool detects it as a trivial vacuity.

3 PRELIMINARIES
3.1 Linear Temporal Logic (LTL)
We use a standard definition of linear temporal logic (LTL), e.g., as
found in [10], over present-future temporal operators X (next), U
(until), F (finally), and G (globally), and past temporal operator H
(historically). For a finite set of Boolean variablesV , a computation
σ = s0s1.. ∈ (2

V )ω is an infinite sequence of states, i.e., of truth
assignments si toV . We useσ , i |= ψ to denote that the LTL formula

ψ holds at position i ≥ 0 of σ .
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We denote σ , 0 |= ψ by σ |= ψ , and say that σ satisfies ψ . Two
LTL formulas φ andψ are LTL equivalent, denoted φ ≡

LTL
ψ , iff for

all computations σ , σ |= φ iff σ |= ψ . One LTL formula φ implies

another LTL formulaψ , denoted φ →
LTL

ψ , iff for all computations

σ , if σ |= φ then σ |= ψ . An LTL formula φ is satisfiable iff there is

a computation σ s.t. σ |= φ.

3.2 GR(1) and GR(1) Realizability
LTL formulas can be used as specifications of reactive systems,

where atomic propositions are interpreted as environment (input)

and system (output) variables. An assignment to all variables is

called a state.

A strategy for an LTL specification φ prescribes the outputs of a

system that from its winning states for all environment choices lead

to computations that satisfy φ. A specification φ is called realizable

if a strategy exists such that for all initial environment choices the

initial states are winning states. The goal of LTL synthesis is, given

an LTL specification, to find a strategy that realizes it, if one exists.

GR(1) synthesis [10] handles a fragment of LTL where speci-

fications contain initial assumptions and guarantees over initial

states, safety assumptions and guarantees relating the current and

next state, and justice assumptions and guarantees requiring that

an assertion holds infinitely many times during a computation. A

GR(1) specification S consists of the following elements [10]:

• X input variables controlled by the environment;

• Y output variables controlled by the system;

• X′ and Y ′ copies of input and output variables at next step

• θe assertion over X characterizing initial environment states;

• θs assertion over X ∪Y characterizing initial system states;

• ρe (X ∪ Y ∪ X′) transition relation of the environment;

• ρs (X ∪ Y ∪ X′ ∪ Y ′) transition relation of the system;

• Jei ∈1..n justice goals of the environment;

• J sj ∈1..m justice goals of the system.

A GR(1) specification is realizable, i.e., allows an implementation,

iff the following LTL formula is realizable
1
:

φsr = (θe → θs ) ∧ (θe → G((Hρe ) → ρs ))∧

(θe ∧ Gρe → (
∧

i ∈1..n
GFJei →

∧
j ∈1..m

GFJ sj )). (1)

Roughly, φsr means that if the environment keeps all initial as-

sumptions then the system should keep all initial guarantees, as

long as the environment keeps all safety assumptions the system

should keep all safety guarantees, and in all infinite plays, if the

environment keeps all justice assumptions the system should keep

all justice guarantees.

Specifications for GR(1) synthesis have to be expressible in the

above structure and thus do not cover the complete LTL. Efficient

symbolic algorithms for GR(1) realizability checking and controller

synthesis have been presented in [10, 38]. Specifically, realizability

checking is done in time O(nmN 2), where N is the size of the state

space 2
X∪Y

. The algorithm of [10, 38] computes winning states for

the system, i.e., states from which the system can realize φsr .

1
We use the definition of strict realizability, as defined in [10] and implemented in

several GR(1) synthesis tools, including Slugs [18] and Spectra [33].

The semantics of a specification in the context of inherent vacuity

was defined as the set of its implementations [20]. We use here

LTL semantics, which for GR(1) is the set of computations that

φsr satisfies, formally {σ |σ |= φsr }. This semantics is finer as it

determines the set of implementations [20, 22], but not vice versa.

We use a parametrized version of φsr for our proofs, namely

φsr [p1,p2,p3,p4,p5,p6] = (p1 → p2) ∧ (p1 → G((Hp3) → p4)) ∧
(p1 ∧ Gp3 → (p5 → p6)).

Thus, φsr = φsr [θe , θs , ρe , ρs ,
∧
i ∈1..n GFJ

e
i ,
∧
j ∈1..m GFJ sj ]. We

also use a dot notation to avoid rewriting replacements that remain

the same, e.g., φsr [α, ·, ·, ·, β,γ ] = (α → θs ) ∧ (α → G((Hρe ) →
ρs )) ∧ (α ∧ Gρe → (β → γ )).

3.3 Abstract Syntax of a Specification
Since vacuity depends not only on semantics but also on syntax, in

our context it is important to consider variables with multi-valued

domains and to handle individual specification elements (e.g., initial

assertions) separately. We provide an abstract syntax definition of

a GR(1) specification (inspired by Spectra [42]).

Definition 1 (Abstract syntax of a specification). A GR(1)
specification is a tuple Spec = ⟨Ve ,Vs ,D,Me ,Ms ⟩, where Ve and
Vs are sets of environment and system variables respectively, D :

Ve ∪ Vs → Doms assigns a finite domain to each variable2, and
Me andMs are the environment and system modules. A module is a
tripletM = ⟨I ,T , J ⟩ that contains sets of initial assertions I = {In }in=1,
safety assertions T = {Tn }tn=1, and justice assertions J = {Jn }

j
n=1 of

the module, where i = |I |, t = |T | and j = |J |. The set of elements of
moduleM = ⟨I ,T , J ⟩ is BM = I ∪ {G Ti }ti=1 ∪ {GF Ji }

j
i=1.

3.4 Basic Symbolic Algorithms
We describe two basic algorithms [21] that we implemented sym-

bolically and use in our work, namely reachability (Alg. 1), and a

generalized Buchi winning region computation (Alg. 2).

We write here in µ-calculus notation the formulas for the two

algorithms. The modal µ-calculus is a fixed-point logic [26].

R(ρ, F ) = JµY .F ∨ ^Y K (2)

W (ρ, {Ji }
n
i=1) = JνZ .

n∧
i=1

µY .(Ji ∧ ^Z ) ∨ ^Y K (3)

Equ. 2 describes states from which one can reach states in F with

a finite path using the transition relation ρ. Equ. 3 describes states
fromwhich there is a path according to ρ that reaches all sets {Ji }

n
i=1

infinitely often
3
. Both µ-formulas in Equ. 2 and 3 are interpreted

over the transition system with states 2
X
and transition relation

ρ ⊆ 2
X × 2

X
. We denote with ^X states that have a transition

entering a state in X according to ρ. Explicitly, the semantics of

^X is the set {s |∃s ′ ∈ Xρ(s, s ′)}.
Symbolic algorithms in our context operate on sets of states and

transitions over Boolean variables X and their primed copy X′

instead of on their explicit representations. We operate on asser-

tions using the usual Boolean operators. All operations used in our

2
We use formulas with non-binary variables without explicitly translating them, e.g.,

we may write GF x ≥ 2 where D(x ) = {1, 2, 3} without using two binary variables

for x . Our implementation fully supports multi-valued variables.

3
If the set of justices is empty, we define one justice that contains all states.
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Algorithm 1 Reach computes all states that have a path to a set of states

given a transition relation.

Require: A transition relation ρ , and a set of states X
Ensure: returns states that reach X
1: R ← X
2: R′ ← ⊤
3: while R , R′ do
4: R′ ← R
5: R ← X ∨ pred (ρ , R)
6: end while
7: return R

Algorithm 2 BuchiWinRegion computes a winning region of a gener-

alized Buchi condition given a transition relation and a set of justices.

Require: A transition relation ρ , and a set of justices J = {Ji }ni=1
Ensure: returns winning region of the generalized Buchi condition

1: if J = ∅ then
2: J ← {⊤}
3: end if
4: W ← ⊤
5: W ′ ← ⊥

6: whileW ,W ′ do
7: W ′ ←W
8: for Ji ∈ J do
9: star t ← pred (ρ ,W ) ∧ Ji
10: W ←W ∧ Reach(ρ , star t )
11: end for
12: end while
13: returnW

algorithms are symbolic and have direct implementations using

Binary Decision Diagrams (BDDs) with CUDD [41].

We use pred(ρ, ξ ), computed symbolically by ∃X′(ρ∧prime(ξ )),
for states that can enter a state in ξ according to the transition

relation ρ. prime(ξ ) translates an assertion ξ over X to an equiv-

alent assertion over X′. Existential quantification over X′ yields

an assertion without X′ that holds iff there exists an assignment to

variables in X′ s.t. the assertion holds.

4 DEFINING INHERENT VACUITY FOR GR(1)
Intuitively, a vacuous element of a specification is a part of it that

is redundant in the sense that if we remove it, the semantics of the

specification will not change.

Since we are interested in GR(1) specifications, we choose a prag-

matic, case-based approach, which takes advantage of the structure

of GR(1) specifications. We require preservation of LTL seman-

tics, which ensures that the set of implementations remains un-

changed [20, 22]. We then define several types of vacuities that are

applicable to GR(1) specifications. We consider several cases corre-

sponding to different elements (i.e., members of BMe ∪ BMs ) of the

specification. For each case, we define a set of sub-formulas, which

we call a premise-set, and another sub-formula we call a consequent.

We will then prove that if the premise-set implies the consequent,

the specification element in question is indeed a vacuity.

4.1 Specification Elements Vacuity
We first define an element of a specification as vacuous when its

removal from the specification does not change the LTL semantics

of the strict realizability formula.

Definition 2 (Vacuous element of a GR(1) specification).

For a specification Spec = ⟨Ve ,Vs ,D,Me ,Ms ⟩ and an element v ∈

Table 1: Specification element vacuity types

M T v ps(v) cons(v)

E

V e
I i ∈ Ie Ie \ {i } i

V e
S G t ; t ∈ Te Te \ {t } t

V e
J GF j ; j ∈ Je Ie ∪ Is ∪ {G t |t ∈ Te ∪Ts } ∪ {GF x |x ∈ Je \ {j }} GF j

S

V s
I i ∈ Is Ie ∪ (Is \ {i }) i

V s
S G t ; t ∈ Ts Te ∪ (Ts \ {t }) t

V s
J GF j ; j ∈ Js Ie ∪ Is ∪ {G t |t ∈ Te ∪Ts } ∪ {GF x |x ∈ Je ∪ (Js \ {j })} GF j

BMe ∪BMs , letφ
sr denote the LTL formula for the realizability of Spec

(see Equ. 1), and let φsrv denote the same formula for the specification
Spec without v , then v is vacuous iff φsr ≡LTL φ

sr
v , i.e., the removal

of v does not change the LTL semantics of the specification.

We now define types of vacuities for specification elements. Each

element (whether initial, safety, or justice element) in each module

(environment or system) may be vacuous. Intuitively, an element

is vacuous when a subset of other elements implies it, rendering it

redundant. Thus, we will define and detect each vacuity type based

on a pair: a premise-set ps and a consequent cons; whenever the
latter is implied by the conjunction of the elements in the former,

we have a correct vacuity.

Table 1 lists six types of vacuities, their respective module (E

stands for environment and S for system), their type name (under

T), and their respective premise-set and consequent. For example,

line 5 of Table 1 defines the vacuity of system module safeties V s
S :

A system module safety G t for t ∈ Ts is vacuous, if the conjunction
of the propositional parts of all environment and system safeties,

without it, implies its consequent t , i.e., if (∧α ∈Te∪(Ts \{t })α) →LTL
t .

Remark 1. Note that safety elements vacuities are defined without
the temporal operator G. Indeed, it would be incorrect to consider impli-
cation between safeties with the temporal operator G, i.e., it would not
define a vacuity. Consider the specification ⟨{a,a1}, {b},D,Me ,Ms ⟩,
where a and a1 are Boolean environment variables, D(b) = {1, 2, 3},
BMe = {G ¬a, G (b = 1 → Xa)}, and BMs = {G (b < 3 → (b <
Xb ∧ Xb < 3)), G (b = 3), G (b = 3 → Xa1)}. In this specification
G (b < 3→ (b < Xb ∧ Xb < 3)) →LTL G (b = 3). The specification is
unrealizable, but if we remove G (b = 3) from BMs the specification
becomes realizable, because now the system can win by setting b = 1

at the initial state. Clearly, the semantics has changed. See [1] for
additional examples that guided our definition of vacuity types.

Recall the vacuities in the Lift specification from Sect. 2. We can

now explain their types, premise-sets, etc.

Example 1 (Lift example vacuities). The four vacuities in List. 1
are of typeV s

J . Their consequent is thus themselves, and their premise-
sets are all the elements of the specification excluding themselves. The
vacuity in List. 2 is of type V s

S . Its consequent is thus its propositional
part, and its premise-set is the set of propositional parts of all other
safeties in the specification.

We now prove the correctness of Table 1, i.e., that for each of

the six formulas v in the table, when the premise-set implies its

consequent, the formula is a vacuity.

Theorem 1 (Table 1 element removal preserves LTL seman-

tics). Given a specification ⟨Ve ,Vs ,D,Me ,Ms ⟩ andv ∈ BMe ∪BMs ,
for the six definitions of premise-set ps(v) and consequent cons(v)
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presented in Table 1, if (∧α ∈ps(v)α) →LTL cons(v), then v is a vacu-
ity, i.e., its removal preserves the LTL semantics of the specification.
Formally, φsr ≡LTL φ

sr
v as defined in Definition 2.

Proof. Let Me = ⟨Ie ,Te , Je ⟩ and Ms = ⟨Is ,Ts , Js ⟩. The proof

handles each type of vacuity separately.

Type V e
I :

Let v = i ∈ BMe be a vacuity of type V e
I , then v = i ∈ Ie , θ

e =

∧x ∈Ie x and θev = ∧x ∈Ie \{i }x . Since v is an initial environment

vacuity we know that θev → i , thus θe ≡ θev ∧ i ≡ θ
e
v , and therefore

φsrv = φ
sr [θev , ·, ·, ·, ·, ·] ≡LTL

φsr [θe , ·, ·, ·, ·, ·] = φsr .

Type V s
I :

Let v = i ∈ BMs be a vacuity of type V s
I , then v = i ∈ Is , θ

s =

∧x ∈Is x and θsv = ∧x ∈Is \{i }x . Since v is an initial system vacuity

we know that θe ∧θsv → i , thus θe → θs ≡ θe → θsv , and therefore

φsrv = φ
sr [θe , θsv , ·, ·, ·, ·] ≡LTL

φsr [θe , θs , ·, ·, ·, ·] = φsr .

Type V e
S :

Letv = G t ∈ BMe be a vacuity of typeV
e
S , then t ∈ Te , ρ

e = ∧x ∈Te x
and ρev = ∧x ∈Te \{t }x . Since v is a safety environment vacuity

we know that ρev → t , thus ρe ≡ ρev ∧ t ≡ ρev , and therefore

φsrv = φ
sr [·, ·, ρev , ·, ·, ·] ≡LTL

φsr [·, ·, ρe , ·, ·, ·] = φsr .

Type V s
S :

Letv = G t ∈ BMs be a vacuity of typeV
s
S , then t ∈ Ts , ρ

s = ∧x ∈Ts x
and ρsv = ∧x ∈Ts \{t }x . Proving that φsrv = φsr [·, ·, ·, ρsv , ·, ·] ≡LTL

φsr [·, ·, ·, ρs , ·, ·] = φsr , is equivalent to proving that G((Hρe ) →
ρs ) ≡

LTL
G((Hρe ) → ρsv ). Note that since ρs → ρsv , then also

G((Hρe ) → ρs ) →
LTL

G((Hρe ) → ρsv ) holds. Conversely, let σ be a

computation such that σ |= G((Hρe ) → ρsv ). We now show that

for all i ≥ 0, we have σ , i |= (Hρe ) → ρs , which proves that

G((Hρe ) → ρsv ) →LTL
G((Hρe ) → ρs ). For every i ≥ 0, either

σ , i ̸ |= Hρe , thus σ , i |= (Hρe ) → ρs , and we are done. Otherwise

assume σ , i |= Hρe , then σ , i |= ρsv , plus according to the definition

of H we have σ , i |= ρe . Since v = G t is a safety system vacuity

then ρe ∧ ρsv → t , thus σ , i |= ρsv ∧ t ≡ ρ
s
.

Preliminary considerations for both types V e
J and V s

J :

For justice vacuities of both kinds we show bellow thatφsr ≡
LTL

φsrv
by showing both φsr →

LTL
φsrv , and φsrv →LTL

φsr , thus we always

assume a computation σ such that either σ |= φsr or σ |= φsrv
holds, in order to imply the other. Before we discuss both types

of vacuities separately, we show that it is enough to consider only

computations σ that satisfy σ |= θe ∧ θs ∧ Gρe ∧ Gρs .
First note that for all σ ̸ |= θe ∧ Gρe , we know that σ |= φsr

iff σ |= (θe → θs ) ∧ (θe → G((Hρe ) → ρs )) iff σ |= φsrv . Thus

we only need to prove that φsr ≡
LTL

φsrv for computations σ that

satisfy σ |= θe ∧ Gρe . Also note that when we assume that σ |= φsrv
holds or σ |= φsr holds, then σ |= θs holds because in both cases

σ |= θe → θs , and we focus on computations that satisfy σ |= θe .
Similarly, we know that σ |= Gρs because σ |= θe → G((Hρe ) →
ρs ) holds in both cases, and we focus on computations for which

σ |= θe ∧ Gρe holds.

Type V e
J :

Let v = GF j ∈ BMe be a vacuity of type V e
J . In order to prove that

φsrv = φ
sr [·, ·, ·, ·,

∧
x ∈Je \{j } GFx, ·] ≡LTL

φsr [·, ·, ·, ·,
∧
x ∈Je GFx, ·] =

φsr , it is enough to show thatσ |=
∧
x ∈Je GFx iffσ |=

∧
x ∈Je \{j } GFx

for all computations σ |= θe ∧ θs ∧ Gρe ∧ Gρs . Evidently always

Table 2: Unreachable domain values vacuity types

M T v ps(v) cons(v)

E V e
D dv(var , value);var ∈ Ve ;value ∈ D(var ) Te var , value

S V s
D dv(var , value);var ∈ Vs ;value ∈ D(var ) Te ∪Ts var , value

∧
x ∈Je GF x →LTL

∧
x ∈Je \{j } GF x . Since GF j is an environment jus-

tice vacuity, we know that θe∧θs∧Gρe∧Gρs∧
∧
x ∈Je \{j } GF x →LTL

GFj, thus for all computations σ |= θe ∧ θs ∧ Gρe ∧ Gρs , we know
that σ |=

∧
x ∈Je \{j } GF x implies σ |=

∧
x ∈Je GF x .

Type V s
J :

Let v = GF j ∈ BMs be a vacuity of type V s
J . For all computations

σ such that σ ̸ |=
∧
x ∈Je GF x we know that σ |= φsrv iff σ |= (θe →

θs ) ∧ (θe → G((Hρe ) → ρs )) iff σ |= φsr .
Otherwise, σ |=

∧
x ∈Je GF x , and in order to prove that φsrv =

φsr [·, ·, ·, ·, ·,
∧
x ∈Js \{j } GF x] ≡LTL

φsr [·, ·, ·, ·, ·,
∧
x ∈Js GF x] = φ

sr
,

it remains to show that σ |=
∧
x ∈Js GF x iff σ |=

∧
x ∈Js \{j } GF x for

all computations that satisfy σ |= θe ∧ θs ∧ Gρe ∧ Gρs
∧
x ∈Je GF x .

However, since GF j is a system justice vacuity, we know that θe ∧
θs ∧ Gρe ∧ Gρs ∧

∧
x ∈Je GF x ∧

∧
x ∈Js \{j } GF x →LTL

GFj. �

4.2 Unreachable Domain Values Vacuity
Second, we consider unreachable domain values, i.e., values that

are unreachable in any controller that realizes the specification, as

another form of vacuity. Note that this is an extension of the notion

of vacuity, which is usually defined only w.r.t. subformulas of a

specification.

Definition 3 (Unreachable domain value formula). An
unreachable domain value formula dv(var ,value) is the formula
G var , value .

We claim that unreachable domain value vacuities as defined

in Table 2 are indeed vacuities by showing that for V e
D (resp. V s

D ),

adding dv(var ,value) as an assumption (resp. guarantee) to the

specification, does not change its semantics.

Theorem 2 (Semantic eqivalence under unreachable do-

main value restriction). Given a specification ⟨Ve ,Vs ,D,Me ,Ms ⟩

and a formula v = dv(var ,value) of type V e
D (resp. V s

D ), such that
(∧α ∈ps(v)α) →LTL cons(v), adding v as an assumption (resp. guar-
antee) does not change the LTL semantics of the specification.

Proof. Adding the safety dv(var ,value) in both cases would

create a new specification in which dv(var ,value) is a vacuity of

type V e
S (resp. V s

S ). According to Thm. 1, the new specification is

LTL equivalent to the original specification. �

4.3 Unsatisfiability as Vacuity: Avoiding
Vacuous Vacuities

Finally, we define unsatisfiable specifications as vacuous. Unsatisfi-

ability is a form of inherent vacuity [20]. Intuitively, if the conjunc-

tion of all the elements in the specification is equivalent to false,

the specification is considered vacuous. Formally:

Definition 4 (Unsatisfiability as vacuity). For a specifica-
tion Spec = ⟨Ve ,Vs ,D,Me ,Ms ⟩, consider the formula ⊥ with the
premise-set ps(⊥) = BMs ∪ BMe and the consequent cons(⊥) = ⊥.
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Algorithm 3 Sat Satisfiability of initial states, a safety and justices.

Require: θ , ρ , and J = {Ji }ni=1
Ensure: returns true iff θ ∧ Gρ ∧

∧n
i=1 GFJi is satisfiable

1: return BuchiWinRegion(ρ , J ) ∧ θ , ⊥ ◃ Use Alg. 2

Algorithm 4 ImpJust Computes implication of a justice.

Require: θ , ρ , J = {Ji }ni=1 , and J imp

Ensure: returns true iff θ ∧ Gρ ∧
∧n
i=1 GFJi →LTL GFJ imp

holds

1: return Reach(ρ , BuchiWinRegion(ρ ∧ ¬J imp , J )) ∧ θ = ⊥ ◃ Use Alg. 1, 2

The specification has a vacuity of typeV⊥ if it satisfies the requirement
∧α ∈ps(⊥)α →LTL cons(⊥), i.e., if (∧α ∈BMs ∪BMe

α) →LTL ⊥.

Defining unsatisfiable specifications as vacuous allows us to

avoid the many additional meaningless vacuities one may find in

this case. For example, in a specification with seven elements, such

that the conjunction of three of which equals false, up to four ele-

ments may be trivially found vacuous because of the unsatisfiability

of the specification, regardless of their content. To avoid reporting

these vacuous vacuities (pun intended), when a specification is

unsatisfiable, we define it as vacuous and avoid looking for vacuous

elements in it.

5 DETECTING VACUITIES
We now describe how we detect the different types of vacuities

defined in the previous section. We continue with the overall algo-

rithm for detecting all the vacuities in a given specification. Finally,

we discuss correctness and complexity.

5.1 Detecting Specific Types of Vacuity
5.1.1 Detecting Initial Assertions , Safeties, and Domain Vacuities.
The premise-sets and consequents of vacuities of types V e

I , V
s
I ,

V e
S , V

s
S , V

e
D , and V s

D , namely initial assertions, safeties, and do-

main vacuities, of both environment and system modules, include

no LTL operators. Thus, in order to detect them, we simply use

propositional implication, which in our settings is implemented

symbolically using BDDs.

5.1.2 Detecting Unsatisfiability. For the unsatisfiability of a spec-

ification (vacuity of type V⊥), we consider an algorithm for the

satisfiability of formulas of the form θ ∧ Gρ ∧
∧
i ∈1..n GFJi over

Boolean variables X. This is easily reducible to the Buchi winning

region problem in state space 2
X
, by checking that the winning

region intersects the initial states, i.e., thatW (ρ, {Ji }
n
i=1) ∩ θ , ∅.

This yields Alg. 3.

5.1.3 Detecting Justice Vacuities. For vacuities of types V e
J and V s

J ,

we check implications of the form (θ ∧ Gρ ∧
∧
i ∈1..n GFJi ) →LTL

GFJ imp
. This implication is equivalent to the unsatisfiability of

θ∧Gρ∧
∧
i ∈1..n GFJi∧FG¬J

imp
, which is reducible to the Buchi win-

ning region problem, by computing statesR(ρ,W (ρ |¬J imp , {Ji }
n
i=1)),

and checking that they do not intersect θ , which yields Alg. 4. We

denote by ρ |¬J imp the restriction of ρ to states in ¬J imp
, namely

{(s, s ′) ∈ ρ |s < J imp }.

Algorithm 5 Vacuities Finds all vacuities of a specification.

Require: Spec = ⟨Ve ,Vs , D , ⟨Ie ,Te , Je ⟩, ⟨Is ,Ts , Js ⟩⟩
Ensure: returns the set of all vacuities of Spec
1: θSpec ← ∧φ∈Ie∪Is φ
2: ρSpec ← ∧φ∈Te∪Ts φ
3: if ¬Sat(θSpec , ρSpec , Je ∪ Js ) then ◃ Use Alg. 3

4: return {⊥}

5: end if
6: vac ← ∅
7: for θ ∈ Ie ∪ Is do
8: if (∧α ∈ps (θ )α ) → cons(θ ) then ◃ See Tbl. 1 for ps and cons def.
9: Add θ to vac
10: end if
11: end for
12: for ρ ∈ Te ∪Ts do
13: if (∧α ∈ps (Gρ )α ) → cons(G ρ) then ◃ See Tbl. 1 for ps and cons def.
14: Add Gρ to vac
15: end if
16: end for
17: for j ∈ Je ∪ Js do

18: PS J ←
{
Je \ {j } j ∈ Je
Je ∪ Js \ {j } j ∈ Js

19: if ImpJust(θSpec , ρSpec , PS J , j) then ◃ Use Alg. 4

20: Add GFj to vac
21: end if
22: end for
23: for var ∈ Ve ∪Vs do
24: for value ∈ D(var ) do
25: dv ← G var , value
26: if (∧α ∈ps (dv )α ) → cons(dv) then ◃ See Tbl. 2 for ps and cons def.
27: Add dv to vac
28: end if
29: end for
30: end for
31: return vac

5.2 Putting it All Together: Detecting All
Vacuities in a Given Specification

Algorithm 5 finds all vacuities in its input specification Spec . If the
specification is unsatisfiable, we return ⊥ as the only vacuity (lines

3-5, see Def. 4). Otherwise, we go through all initial assertions (lines

7-11), safety assertions (lines 12-16), justices assertions (lines 17-22),

and domain values (lines 23-30), and check for vacuities according

to vacuity types defined in Tables 1 and 2.

5.3 Correctness and Complexity
The correctness for detecting initial assertions, safeties, and domain

vacuities is immediate.

For the correctness of detecting unsatisfiability and justice vacuities,

note that Alg. 1 and 2 are symbolic implementations of well-known

algorithms [21]. Alg. 3 is correct because Alg. 2 is correct, and be-

cause it verifies that there are states in θ from which we can visit

all justices infinitely often. In Alg. 4, we use a direct reduction of

the implication of justice J imp
to the generalized Buchi condition.

Lemma 1 proves the correctness of the reduction.

Lemma 1. Let θ , Ji for all 1 ≤ i ≤ n, and J imp be proposi-
tional formulas over variables X, and let ρ be a propositional for-
mula over X ∪ X′. Then4, θ ∧ Gρ ∧

∧n
i=1 GFJi →LTL GF J imp iff

R(ρ,W (ρ |¬J imp , {Ji }
n
i=1)) ∩ θ = ∅.

4
We use set and logic notations interchangeably here, e.g., θ is both a formula and the

subset of 2
X
where the formula holds.
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Proof. R(ρ,W (ρ |¬J imp , {Ji }
n
i=1)) ∩ θ , ∅ iff there is a compu-

tation σ such that σ |= θ , and σ |= Gρ and σ |= FG¬J imp ≡
LTL

¬GFJ imp
and σ |= F(

∧n
i=1 GFJi ) ≡LTL

∧n
i=1 GFJi iff there is a com-

putation σ such that σ |= θ ∧ Gρ
∧n
i=1 GFJi , and σ ̸ |= GFJ imp

iff

θ ∧ Gρ ∧
∧n
i=1 GFJi 9LTL

GF J imp �

Finally, Alg. 5 is correct because it checks all vacuity types ac-

cording to their definition.

In terms of complexity, measured in symbolic steps, detecting

initial assertions, safeties, and domain vacuities requires a number

of symbolic operations linear in the number of elements in the spec-

ification E = |BMe ∪BMs |. Alg. 1 takesO(N ) and Alg. 2 takesO(N
2),

so Alg. 3 and 4 takeO(N 2). For Alg. 5, the complexity, as measured

in symbolic steps, isO(E2) in lines 7-16,O(E+Σvar ∈Ve∪Vs |D(var )|)
in lines 23-30 (the conjunction of the only two premise-sets requires

O(E) symbolic operations to compute), andO((m+n)N 2) in lines 3-5

and 17-22. This is comparable and slightly better than theO(mnN 2)

complexity of realizability checking (see Sect. 3.2).

6 VACUITY CAUSE LOCALIZATION
The automatic detection of a vacuity of any type allows the engineer

to know that her specification has a redundant element. However,

knowing that an element of a specification is redundant may not

be enough. To better understand the detected vacuity, and decide

what to do with it, we provide the engineer with a means to localize

the cause of the vacuity.

Localizing the Cause of Vacuities: Vacuity Core. Given a vacuity,

we define its core to be a locally minimal subset of its premise-set

that implies its consequent. Formally:

Definition 5 (Vacuity core). Given a vacuity v , a vacuity core
of v is a subset Γ ⊆ ps(v) such that (∧α ∈Γα) →LTL cons(v), but for
any strict subset Γ′ ⊂ Γ, (∧α ∈Γ′α)9LTL cons(v).

To compute a vacuity core, we apply DDMin [44], which finds a

locally minimal subset of a set for a given monotonic criterion. For

each of the vacuities found in lines 4, 9, 14, 20, or 27 of Alg. 5, we

minimize its premise-set. The criterion method for minimization is

implemented using BDD implication for vacuities found in lines 9,

14 and 27, and using Alg. 3 and Alg. 4 for vacuities found in lines 4

and 20, resp. Unsatisfiability can be viewed as LTL implication of ⊥,

and is thus consistent with our framework. Importantly, note that

implication is monotonic in the sense that ifv is implied by the con-

junction of the elements in Γ, v is also implied by the conjunction

of elements in any superset of Γ. This satisfies the monotonicity

requirement of the DDMin algorithm.

Example 2. Recall the vacuity in line 36 of the specification in
List. 1. This is a vacuity of type V s

J . We detect it by checking that it
is implied by all other elements of the specification (its premise-set).
Then, using the DDMin algorithm, we find that it is implied by the
specification elements in lines 24, 35 and 37, and that it is not implied
by any strict subset of this set of elements. Thus, this set of three
elements constitutes a core for this vacuity.

A vacuity core is a local minimum. The same vacuity may have

different cores of different sizes, and DDMin finds one of them.

That said, a vacuity core is indeed a sufficient and necessary subset

of the specification that implies the detected vacuity.

Finally, in Sect. 8 we empirically show that vacuity cores are in

many cases very effective in localizing the cause of vacuities.

Trivial Vacuities. A vacuity may be trivial, in the sense that it

does not depend on any other element in the specification. A simple

example for a trivial vacuity is a tautology, e.g., the guarantee

GF ¬(x ≤ 3 ∧ x ≥ 4). This would be a vacuity in any specification.

Interestingly, however, some trivial vacuities are not tautologies.

For example, the guarantee in List. 2 is a trivial vacuity for the

range 1..3 of f , but it would not be a vacuity at all if the range was

0..3.

Checkingwhether a vacuity is trivial is done by checkingwhether

the BDD that represents the assertion of the element, and takes

into account domain values, is ⊤. An exception is a justice that

represents a pattern, see Sect. 7.3.

7 EXTENSIONS
7.1 Vacuities in Unrealizable Specifications
Unrealizability is a well-known problem in specifications for synthe-

sis. Many specifications written during a development process may

be unrealizable. Do unrealizable specifications include vacuities?

Defining vacuity for unrealizable specifications requires a care-

ful discussion of the semantics. The semantics of a specification

for reactive synthesis is typically defined as its set of implementa-

tions [20]. Accordingly, all unrealizable specifications, which have

no implementations, are equivalent. Thus, this semantics is not use-

ful for inherent vacuity of unrealizable specifications. Our approach

is different.

As we presented in Sect. 3.2, the semantics we use is finer, and is

defined not as the set of implementations of φsr but as the set

of computations satisfying φsr . Since our definition of vacuity

preserves the LTL equivalence of φsr (see Theorems 1 and 2),

it transfers seamlessly to the unrealizable case: removing a vacuous

element from an unrealizable specification does not change the set

of counter-strategies [25, 35] it induces. Intuitively, this means that

two such specifications, before and after removal of a vacuity, are

different neither in terms of how close they are to realizability, nor

by their reasons for unrealizability.

For example, the specification in List. 1, which we have bor-

rowed from [2], is unrealizable, yet all the vacuities we detect, and

their causes, may contain valuable information for the engineer.

Specifically, without the guarantees in lines 35-37, which cause the

vacuities in lines 30-32, the specification becomes realizable, and,

in this case, free of vacuities.

Finally, in Sect. 8 we empirically show that many unrealizable

specifications taken from benchmarks that appeared in the litera-

ture include vacuities.

7.2 Dealing with Auxiliary Variables
GR(1) has been extended with past LTL formulas (already in [10]),

patterns [30], and monitors [33]. The extensions are useful and may

help engineers write better specifications but their use introduces

auxiliary variables that do not appear in the original specification.

Auxiliary variables may also be added explicitly.
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It is thus important to note that auxiliary variables do not hinder

our ability to detect vacuous specification elements, check satisfi-

ability, or compute vacuity cores. Our only special treatment for

auxiliary variables is to not check them for domain vacuities, as we

consider this case to be irrelevant.

7.3 Dealing with Auxiliary Elements
Patterns [16, 30] allow the engineer to easily express many use-

ful temporal properties as additional assumptions or guarantees,

although their LTL formulation is not in GR(1). For example, a

response pattern is an LTL formula of the form response(p,q) =
G (p → F q), which means that whenever p occurs, q will even-

tually occur as well. It is thus important to consider vacuities in

specifications that include patterns.

Defining and detecting vacuity for specifications that use pat-

terns is challenging, because their reduction toGR(1), following [30],

adds not only auxiliary variables, but also auxiliary elements to the

specification, i.e., additional initial, safety, and justice assumptions

or guarantees. These additional elements are not explicit in the

specification as written by the engineer and thus any vacuity that

may be related to them should not be computed or reported at their

level but rather at the level of the pattern that induced them, as

written by the engineer.

Specifically, each pattern induces three GR(1) specification ele-

ments - a justice which is implemented as a part of the respective

module, and two auxiliary elements, one is an initial assertion, and

one is a safety.

Our approach handles auxiliary elements and patterns for all as-

pects of the vacuities we defined: considering patterns as vacuities,

inclusion in premise-sets, and vacuity core computations. We make

the special treatment for patterns, as detailed below, fully transpar-

ent to the engineer.

7.3.1 Patterns as vacuities. For patterns we always use the justice
induced by the pattern as the consequent, and its auxiliaries are

always a part of its premise-set. Thus, for example, the formula

response(p,p), which is a trivial vacuity, is detected as such because

the auxiliary elements of the pattern imply its justice in this case.

7.3.2 Premise-sets in the presence of patterns. Whenwe form premise-

sets for vacuity element computation, we detect the module of each

auxiliary element by tracing to the pattern that induced it. We then

classify it based on the premise-set definition. Premise-sets of initial

and safety elements (including unreachable domain values) ignore

auxiliary elements in their premise-sets.

7.3.3 Vacuity cores in the presence of patterns. When a pattern is a

part of a premise-set of another specification element, we bundle all

its three elements for core computation. Bundling ensures that the

auxiliary elements are counted as one element of the premise-set

and are not separated when the premise-set is split into parts by

the DDMin algorithm.

Example 3. List. 3 shows a specification for which our tool detects
two vacuities and finds each of their cores.

One vacuity is the response pattern guarantee gamma in line 7. We
detect it because the justice induced by it (which is its consequent) is
implied by the premise-set that includes nine elements, namely the
two auxiliary elements induced by gamma, the safety alpha in line

1 env boolean x;
2 env boolean y;
3 sys boolean z;
4

5 asm G x; // alpha
6 asm pRespondsToS(x, y); // beta
7 gar pRespondsToS(y, z); // gamma , a vacuity
8 gar pRespondsToS(x, z); // delta , a vacuity

Listing 3: Response patterns and cores example

5, and the six elements induced by the patterns beta and delta in
lines 6 and 8 respectively. The core computation for this vacuity works
on a set that has three elements, namely alpha, the three elements of
beta bundled together, and the three elements of delta bundled as
well. It finds that given the two auxiliary elements induced by gamma,
which are not considered for minimization, alpha and delta (but not
any of them alone), are together enough to imply the justice induced
by gamma. Thus, the tool reports alpha and delta as a vacuity core
of gamma.

Another vacuity is the response pattern guarantee delta in line
8. It is a vacuity because of the assumption beta and the guarantee
gamma in lines 6 and 7 respectively. We detect this vacuity because the
justice induced by delta (which is its consequent) is implied by the
premise-set that includes nine elements - the element alpha, all six
elements induced by beta and gamma, and the two auxiliary elements
induced by delta. The core computation works on a set that has three
elements, one of them is alpha, and the other two are each a bundle
of the three specification elements induced by beta and by gamma.
The two auxiliary elements of delta are inside the premise-set yet
not considered for minimization. The DDMin algorithm detects beta
and gamma as a vacuity core of delta.

8 EVALUATION
We have implemented detection for the different types of vacuity as

an extension of Spectra [33, 42], based on CUDD [41] as a BDD li-

brary. Our implementation includes also the computation of vacuity

core, as an instance of the generic DDMin algorithm implemented

in Spectra (with the performance heuristics described in [19]).

Means to run our implementation, all specifications used in our

evaluation, and all data we report on below, are available in support-

ing materials for inspection and reproduction [1]. We encourage

the interested reader to try them out.

The following research questions guide our evaluation.

R1 Does vacuity appear in specifications, and are different types

more frequent than others?

R2 Can vacuity be computed efficiently during development?

R3 Does vacuity core computation effectively localize its cause?

R4 Does vacuity removal make controller synthesis faster?

Below we report on the experiments we have conducted in order

to answer the above questions.

8.1 Corpus of Specifications
We use the benchmark SYNTECH15 [19], which includes a total of

78 specifications of 6 autonomous Lego robots, written by 3rd year

undergraduate computer science students in a project class taught

by the authors of [19]. Out of the 78 specifications in SYNTECH15,
we use 14 unrealizable ones, which we label SYN15U, and all 61

realizable ones, which we label SYN15R. A similar benchmark from
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Table 3: Number of vacuities in SYNTECH specifications

Spec set S H V⊥ V e
I V e

S V e
J V s

I V s
S V s

J V e
D V s

D

SYN15U 14 11 2 0 0 8 3 19 8 0 7

SYN15R 61 51 8 0 0 30 5 102 30 0 11

SYN17U 26 19 4 1 8 22 0 9 16 0 29

SYN17R 118 99 5 15 78 153 0 45 75 21 157

the same authors, SYNTECH17 [33, 42] has 149 specifications. We

use all 26 unrealizable specifications, which we label SYN17U, and
118 realizable ones, which we label SYN17R. 5

We further use 4 different sizes of AMBA [8] (1 to 4 masters), 4

realizable and 12 unrealizable specifications (4 in each of the 3 vari-

ants of unrealizability described in [15]). Finally, we use 4 different

sizes of GENBUF [9] (5 to 30 senders), 4 realizable and 12 unreal-

izable specifications (4 in each of the 3 variants of unrealizability

described in [15].

8.2 Validation
We have implemented an automatic test that removes vacuities

found by our algorithm (or adds a domain restriction element for

domain vacuities, see Sect. 4.2), and checks that realizability, sat-

isfiability of both modules, satisfiability of the specification, and

well-separation all remain unchanged. The test is reproducible [1],

and extensible to any specification in Spectra format. We have also

examined dozens of vacuities and their cores and manually checked

that their cores imply them and that all of the core elements are

indeed required for the implication. These tests have increased our

confidence in the validity of our computations.

8.3 Experiments Setup
We run all experiments on an ordinary PC, Intel Xeon W-2133 CPU

3.6GHz, 32GB RAM with Windows 10 64-bit OS, Java 8 64Bit, and

CUDD 3 compiled for 64Bit, using only a single core of the CPU.

Times we report are average values of 10 runs, measured by

Java in milliseconds. Even though the algorithms we deal with are

deterministic, we performed 10 runs since JVM garbage collection

and BDD dynamic-reordering add variance to running times.
6

8.4 Results: Number of Vacuities
Table 3 presents the number of vacuities found in SYNTECH sets of
specifications. For each set, column S shows the number of specifi-

cations in the set and column H shows the number of specifications

that have at least one vacuity. All other columns show the number

of vacuities per type. We do not detect (and do not report in the

table) the vacuities in unsatisfiable specifications (see Sect. 4.3).

The results show that vacuities are very frequent in SYNTECH
specifications. 82% of specifications include at least one vacuity. We

observe that the most frequent vacuities are of types V e
J , V

s
J and

V s
D . Unsatisfiable specifications are rare.

AMBA and GENBUF specifications are all satisfiable and contain no

domain value vacuities and no trivial vacuities. This is expected

5
The above sets exclude 3 unrealizable SYNTECH15 specifications, and 5 realizable

SYNTECH17 specifications that are not GR(1) specifications (some have system variables

in initial assumptions, and some have primed system variables in safety assumptions).

6
Since BDD-based implementations’ performance is sensitive to variable order, we

note that in all our experiments we used CUDD’s automatic variable reordering. This

is common practice in the literature.
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Figure 1: Running times of satisfiability checks (left columns) and
of finding all vacuities of satisfiable specifications (right columns),
for the SYNTECH sets, grouped by increasing ranges, in seconds.

because all the variables are Boolean and because the specifications

were carefully written by experts. Interestingly, the specifications

do contain many vacuities of type V s
S and some of type V s

J . For

example, the realizable AMBA specification with 4 masters has 4

vacuities of type V s
S , and 1 vacuity of type V s

J .

To answer R1: Vacuities occur frequently in specifications from

the literature. Over 82% of SYNTECH specifications have at least
one vacuity. Vacuities of types V e

J , V
s
J , and V s

D are the most

frequent. All AMBA and GENBUF specifications have vacuities.

8.5 Results: Running Times
Figure 1 shows the running times for all four SYNTECH sets of specifi-
cations. Each set has two columns showing the number of vacuities

found up to a growing time limit starting from 0.1 seconds. The

left hand column reports running times of satisfiability checks. The

right hand column reports running times needed in order to find

all other vacuities of satisfiable specifications.

The results show that for SYN15 specifications, computing satis-

fiability takes less than 1 second, and finding all vacuities is always

done in less than 10 seconds. For SYN17 specifications 100 seconds

are enough in order to compute satisfiability for all but 2 specifica-

tions out of 144, and in order to find all vacuities for 124 out of 135

satisfiable specifications.

Running times for detecting all vacuities in the 16 AMBA speci-

fications were on average 0.1, 0.8, 18.1, and 304.5 seconds for 1 to

4 masters resp. Running times for detecting all vacuities in the 16

GENBUF specifications were on average 0.3, 2.2, 58.3, 480 seconds

for 5 to 30 senders resp. This growth in running times is expected,

as the state space in these benchmarks increases exponentially (e.g.,

in AMBA, by a factor of 64 for each additional master), and as the

number of elements in the specification increases linearly (e.g., in

AMBA, about 30 new elements for each additional master).

To answer R2: Satisfiability and finding all vacuities, is reached

within 10 seconds for all of SYNTECH15 specifications. Within

100 seconds we compute satisfiability and all vacuities for 98%

and 91% of SYNTECH17 specifications, resp.
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Table 4: Localization effectiveness

Spec set T

Core size Reduction ratio

1 2 3 4 ≥ 5 1/8 1/4 1/2

SYN15U 1 11 18 5 4 8 63% 87% 100%

SYN15R 4 46 80 15 17 24 72% 91% 99%

SYN17U 9 41 23 3 5 8 79% 91% 99%

SYN17R 41 294 120 66 16 12 81% 92% 98%
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Figure 2: Running time of vacuity localization for SYNTECH sets,
grouped by increasing ranges, in seconds.

8.6 Results: Localization Effectiveness
Table 4 reports localization results for SYNTECH specifications.

Given a specification set, for each vacuity we first check if it is a

trivial vacuity. For non-trivial vacuities, we find a core (see Sect. 6).

We report under column T the number of trivial vacuities found

in each specification set. For non-trivial vacuities, we report the

number of vacuities for each core size, with the last column re-

porting cores of size five or more
7
. For example, the number 80 in

the second row under column 2 means that in the SYN15R set, 80
vacuities had a core of size 2.

We further report under reduction ratio, the percentage of vacuities

for which the ratio of the core size to the premise-set size
8
, was at

most 1/2, 1/4, and 1/8. E.g., the value 72% in the second row under

column 1/8 means that in the SYN15R set, for 72% of the vacuities,

the core size was at most 1/8 of the premise-set size.

The results show that the vacuity core size is less than half of the

premise-set size for almost all vacuities, is less than a quarter for

more than 87% of the vacuities, and is less than an eighth for more

than 63%. Thus, a vacuity core is usually very effective in localizing

the cause of the vacuity. In absolute terms, cores of sizes 1 and 2

are the most frequent. Large cores of size 5 and higher exist, but

are relatively rare.

Figure 2 shows running times for core computations on SYNTECH
specifications. For SYNTECH15 specifications, all core computations

take less than 10 seconds. For each of the SYNTECH17 specification

sets, all cores are computed within 100 seconds, except one.

7
Note that cores are a local minimum and our algorithm sometimes finds different

cores with different sizes, so we report the median size of the core on 10 runs.

8
We count patterns as single elements in the premise-set and in the core (see Sect. 7.3)

Table 5: Synthesis Time Reduction

Spec set #V V e
I V e

S V e
J V s

I V s
S V s

J

SYN15R 54 – – 7.1% – 1.4% 25.2%

SYN17R 322 0% 0% 7% – 0% 32.2%

To answer R3: Vacuity core computations are effective and effi-

cient. In SYNTECH sets, cores are eight times smaller than their

respective premise-sets in over 63% of the vacuities. Most of

the cores are of size 1 or 2. Core computations take less than

10 seconds for all SYNTECH15, and less than 100 seconds for all

vacuities except one in each of the SYNTECH17 sets.

8.7 Results: Synthesis Time Reduction
Table 5 reports median percentage of synthesis running times reduc-

tion for all specifications in SYN15R and SYN17R for which original

synthesis times in Spectra is over 0.1 seconds, broken down by

vacuity types. Column #V shows the number of vacuities for which

the original synthesis took over 0.1 seconds. Under each vacuity

type we show the median percentage of synthesis running time

reduction when the vacuity is removed from the specification. For

example, the value 32.2% on the second row and rightmost column

means that for SYN17R specifications whose original synthesis time

in Spectra was over 0.1 seconds, for at least half of vacuities of type

V s
J , removing the vacuous justice guarantee reduced synthesis time

by at least 32.2%. We use ‘-’ to mark cases where there were no

relevant vacuities for the vacuity type.

We observe that removing vacuous justice elements, for V e
J and

more so for V s
J , makes synthesis running times faster. This is ex-

pected, as removing justices from the GR(1) winning condition

reduces the computations the algorithm has to perform. These re-

sults are encouraging, since in realizable specifications, vacuities

of these two types are very common (see Sect. 8.4). For other vacu-

ity types, we observed only minor effect on running times, if any.

Again, this is expected because, for example, removing vacuous

elements of type V e
I and V e

S does not change the game’s arena and

winning conditions.

Results for realizable GENBUF and AMBA specifications, which only
have vacuities of types V s

S and V s
J (see Sect. 8.4), show a median of

0% and 44% synthesis time reduction for these vacuity types, resp.

This is consistent with the results for the SYNTECH specifications.

To answer R4: Removal of vacuities of types V e
J and V s

J have

medians of 7%-7.1% and 25.2%-44% of synthesis running time

reduction respectively. For other vacuity types we observe minor

or no difference in synthesis running time.

8.8 Threats to Validity
We discuss threats to the validity of our results. First, symbolic

computations are not trivial and our implementation may have

bugs. To mitigate, we performed a thorough validation using all

specifications available to us, see Sect. 8.2. Second, we have based

most of our evaluation on the SYNTECH specifications, which were
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created by 3rd year undergraduate CS students with no prior expe-

rience in writing LTL specifications. We further examined specifica-

tions from the AMBA and GENBUF sets. We do not know if these are

representative of specifications engineers would write in practice.

Third, we did not perform a user-study, with engineers, to examine

whether users will find the reported vacuities useful for improving

the quality of the specifications they write.

9 RELATEDWORK
Vacuity in Model Checking. Vacuity has been widely studied in

the context of model checking [4, 5, 13, 14, 23, 24, 28, 40]. In this

context, when one checks whether a system satisfies a specification,

vacuity usually means that some elements of the specification play

no role in that satisfaction. Many different definitions for vacuity

exist in this context, and they cover different cases. A classic exam-

ple for vacuity in model checking is the case where a request-grant

assertion G(r → Xд) is satisfied by a system S because S |= G¬r , i.e.,
because a request is never made.

Note that in the context of model checking, vacuity is a property

of a specification and a model. The model may satisfy the specifica-

tion in a vacuous way. Our context is fundamentally different. We

deal with inherent vacuity, which is a property of the specification

alone.

Some empirical evidence from IBM showed that during the first

verification run of a new design, 20% of formulas are found to

be trivially valid, and that trivial validity always points to a real

problem in either the design or its specification or environment [5].

Similar empirical evidence for the context of synthesis does not

exist. Our work provides a step towards collecting such evidence.

Vacuity checks are now a standard component in commercial

model checkers [14]. We believe that they will become standard

components in future synthesizers.

Vacuity in Specifications for Synthesis. Fisman et al. [20] pro-

posed a comprehensive theoretical framework for vacuity in LTL

specifications, called inherent vacuity. The framework defines dif-

ferent aspects for vacuity, relating, e.g., to the setting (closed vs.

open systems), and to tightening the specification or cleaning it

(strengthening/weakening vs. equivalence). Thus, they do not of-

fer a single definition of inherent vacuity, but, rather, a general

theoretical parametrized framework. Finally, they proved that in-

herent vacuity detection can be reduced to LTL satisfiability or

realizability checks, whose complexity is PSPACE-complete and

2EXPTIME-complete, respectively.

Our work is inspired by [20], but follows a pragmatic approach,

takes advantage of the structure of GR(1) specifications, and defines

a specific set of practical cases of inherent vacuity for GR(1) that

allow efficient detection (see Sect. 5.3). Our setup considers open

systems and LTL equivalence. The use of equivalence allows us to

capture vacuities for both realizable and unrealizable specifications.

To our knowledge, our work is the first to define, implement, and

evaluate vacuity detection for GR(1) in particular and for specifica-

tions for reactive synthesis in general.

Finally, Bloem et al. [6] present a technique to synthesize non-

vacuous systems. Given a specification, they show how to syn-

thesize a system that will satisfy the specification non-vacuously.

Their work is thus very different from ours. It is not about inherent

vacuity. As in the case of model checking, the vacuity they consider

is a property of the specification and the (synthesized) model.

Other Quality Aspects of GR(1) Specifications. Some works con-

sidered other quality aspects of GR(1) specifications. One exam-

ple is the detection, explanation, and repair of unrealizability, see,

e.g., [11, 25, 29, 34]. Another example is well-separation [32], which

detects cases in which the synthesized controller may satisfy the

specification by preventing the environment from satisfying the

assumptions, without satisfying the guarantees. Finally, another

example is the detection of assumptions that are not necessary for

realizability [15, 17] or ones that are not weakest [12]. The last

example may be viewed as a special, weakening/strengthening case

(rather than equivalence case) of inherent vacuity [20].

10 CONCLUSION AND FUTUREWORK
We presented inherent vacuity definitions and algorithms for GR(1)

specifications. The types of vacuity we detect include vacuous

elements and vacuous domain values. We extended our work with

vacuity core, which localizes the cause of vacuity.

We implemented our work, validated its correctness, and eval-

uated it on benchmarks from the literature, including more than

200 realizable and unrealizable specifications of autonomous Lego

robots from the SYNTECH benchmarks. The evaluation shows that

the different types of vacuity we consider indeed occur in specifi-

cations, that we detect the different types of vacuities efficiently in

acceptable times, and that vacuity core is effective in localizing the

cause of vacuity. It further shows that removal of vacuous elements

from a specification may significantly reduce synthesis times. To

the best of our knowledge, our work is the first to define, examine,

and evaluate vacuity for GR(1) specifications.

Our work has important implications to anyone using GR(1)

specifications for synthesis. First, we observe that vacuities are

common and their presence may hint at problems in the specifica-

tion. Second, we show evidence that removing vacuities of types

V e
J and V s

J may significantly reduce synthesis time. Thus, as we

provide efficient means for vacuities detection and localization, it

is recommended to examine them and consider their removal.

We suggest future research as follows. First, consider a finer-

grain analysis, down to the level of sub-formulas, i.e., detecting

vacuities within specification elements. Second, Amram et al. have

recently defined GR(1)* [3], an extension of GR(1) specifications

with existential guarantees. GR(1)* expressive power is strictly

beyond that of LTL, so our present work cannot be applied to it as

is. It would be interesting to extend our work on inherent vacuity

to GR(1)*.
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