
Unrealizable Cores for
Reactive Systems Specifications: Artifact

Shahar Maoz
Tel Aviv University

Tel Aviv, Israel

Rafi Shalom
Tel Aviv University

Tel Aviv, Israel

Abstract—This document describes the artifact that accompa-
nies the ICSE’21 paper “Unrealizable Cores for Reactive Systems
Specifications”. The artifact includes the specifications that were
used in the experiments that are described in the paper. It further
includes an executable that allows interested readers to reproduce
these experiments and inspect their results. Additionally, the
executable is applicable to any specification in Spectra format,
which allows conducting similar experiments over any Spectra
specification. We hope the artifact will be useful for researchers
who are interested in reactive synthesis, specifically in different
means to deal with unrealizable specifications.

I. INTRODUCTION

One of the main challenges of reactive synthesis, an auto-
mated procedure to obtain a correct-by-construction reactive
system, is to deal with unrealizable specifications. One means
to deal with unrealizability, in the context of GR(1), an
expressive assume-guarantee fragment of LTL that enables
efficient synthesis, is the computation of an unrealizable core,
which can be viewed as a fault-localization approach.

In [9], we presented QuickCore, a novel algorithm that
accelerates unrealizable core computations by relying on the
monotonicity of unrealizability, on an incremental computa-
tion, and on additional properties of GR(1) specifications.
We further presented Punch, a novel algorithm to efficiently
compute all unrealizable cores of a specification. Finally, we
presented means to correctly handle specifications that include
higher-level constructs beyond pure GR(1) elements.

This document describes the reusable artifact that accom-
panies the paper. The artifact includes the specifications that
were used in the experiments that are described in the paper.
It further includes an executable that allow interested readers
to reproduce these experiments and inspect their results, and
the raw data that resulted from the experiments described in
the paper.

II. AN OVERVIEW OF THE ARTIFACT

A. Corpus of Specifications

The artifact corpus of specifications consists of the bench-
marks SYNTECH15 and SYNTECH17 [5], [7], [10], which
include a total of 227 specifications of 10 autonomous Lego
robots, written by 3rd year undergraduate computer science
students in a project class taught by the authors of [7]. We
use all the unrealizable GR(1) specifications from these bench-
marks, i.e., 14 unrealizable specifications from SYNTECH15

(which we label SYN15U in the paper) and 26 unrealizable
specifications from SYNTECH17 (which we label SYN17U in
the paper).

In addition, the artifact corpus of specifications includes 5
different sizes of AMBA [2] and of GENBUF [3] (1 to 5 masters,
5 to 40 senders resp.), from each of the 3 variants of unreal-
izability described in [4]. We label these 30 specifications by
AM+GN in the paper.

Finally, the artifact includes a folder named Small, which
consists of several small specifications, which are not a part of
the corpus. These include the running example specification of
the paper (in file LiftInt3.spectra), its pure GR(1) form
found in [1] (in file AlurLift3.spectra), and a few other
specifications, mainly taken from recent papers about GR(1)
unrealizability [6], [8]. Whereas most of the specification in
our corpus are rather complicated, and some take very long
time to process, these small specifications in the artifact allow
instantaneous single core and all cores computations with
small, easily observable correct results.

B. Implementation of Algorithms

The artifact includes implementations of several algorithms.
First, implementations of three single core computation al-
gorithms: delta debugging (DDMin), QuickXplain, and
QuickCore. Second, implementations of three all cores
computation algorithms: TD, which is a naive top down search
algorithm, and two variants of the Punch algorithm, namely
PQC and PUD.

The implementation is integrated into the Spectra synthesis
environment [7], [10]. However, in the artifact, it is pack-
aged such that experiments can independently run from the
command line, outside the Spectra environment. In particular,
executing the artifact does not require the installation of
Spectra.

C. Using the Artifact

All experiments are run over specification sets by providing
their folder name.

There are two different tests that run single core algorithms.
One of the tests of single core algorithms provides the running
times of DDMin and QuickCore over a specification set.
It validates the cores found by QuickCore, and includes
various statistics such as core sizes, number of realizability
checks, etc. The other test of single core algorithms provides



the running times of DDMin and QuickXplain over a
specification set. It validates the cores found by QuickX-
plain, and similarly includes various statistics. It is also
possible to determine the number of runs performed per
specification. Performing multiple runs is required because
JVM garbage collection and BDD dynamic-reordering add
variance to running times.

There are three different experiments related to all cores
computations, one for each of the three algorithms TD, PQC,
and PUD. These experiments provide similar information and
validation as above, plus information that is unique to all cores
computations, such as the size of the minimal core, and the
size of the intersection of all the cores. As a byproduct, the
experiments create log files with additional information that
is not reported in the paper, e.g., the time at which each core
was computed. It is possible to set a timeout in minutes for
runs of all cores algorithms. We used a 10 minute timeout in
the experiments reported in the paper.

For convenience, we added scripts that run complete exper-
iments over the whole corpus and include scripts that perform
the exact experiments we conducted in order to obtain the
data for the paper. We also included the raw data which is the
output of our experiments on our specific setup.

The artifact includes detailed technical documentation on
how to install it and how to execute these experiments (file
names, folder names, options, etc.).

III. POTENTIAL FUTURE USES

We hope that the artifact will be useful for researchers
who are interested in reactive synthesis. It may be specifically
useful for researchers who are interested in different means
to deal with unrealizable specifications. We consider the
following potential future uses.

• Use the corpus of specifications as a benchmark when
examining future algorithms for unrealizable single and
all cores computations.

• Use the corpus of specifications and the executable in
a future study that aims at examining the usefulness of
cores to engineers.

• Use the executable on additional Spectra specifications,
beyond those in our corpus, in a study of the algorithms
presented in the paper.

IV. ACKNOWLEDGEMENTS

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No
638049, SYNTECH).

REFERENCES

[1] R. Alur, S. Moarref, and U. Topcu. Counter-strategy guided refinement
of GR(1) temporal logic specifications. In FMCAD, pages 26–33. IEEE,
2013.

[2] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Interactive presentation: Automatic hardware synthesis
from specifications: a case study. In 2007 Design, Automation and Test
in Europe Conference and Exposition, DATE 2007, Nice, France, April
16-20, 2007, pages 1188–1193, 2007.

[3] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Specify, compile, run: Hardware from PSL. Electr.
Notes Theor. Comput. Sci., 190(4):3–16, 2007.

[4] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic
information for realizability. In VMCAI, pages 52–67, 2008.

[5] E. Firman, S. Maoz, and J. O. Ringert. Performance heuristics for GR(1)
synthesis and related algorithms. Acta Inf., 57(1-2):37–79, 2020.

[6] A. Kuvent, S. Maoz, and J. O. Ringert. A symbolic justice violations
transition system for unrealizable GR(1) specifications. In ESEC/FSE,
pages 362–372, 2017.

[7] S. Maoz and J. O. Ringert. Spectra: A specification language for reactive
systems. Software and Systems Modeling, 2021. To appear.

[8] S. Maoz, J. O. Ringert, and R. Shalom. Symbolic repairs for GR(1)
specifications. In Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, pages 1016–1026, 2019.

[9] S. Maoz and R. Shalom. Unrealizable cores for reactive systems
specifications. In ICSE, 2021. To appear.

[10] Spectra Website. http://smlab.cs.tau.ac.il/syntech/spectra/.

http://smlab.cs.tau.ac.il/syntech/spectra/

	Introduction
	An Overview of the Artifact
	Corpus of Specifications
	Implementation of Algorithms
	Using the Artifact

	Potential Future Uses
	Acknowledgements
	References

