
Supporting Materials for:

Triggers for Reactive Synthesis Speci�cations

Gal Amram1, Dor Ma'ayan1, Shahar Maoz1,
Or Pistiner1, and Jan Oliver Ringert2

1 Tel Aviv University, Israel
2 Bauhaus University Weimar, Germany

Abstract. This document provides supporting materials for the

ICSE'23 paper titled Triggers for Reactive Synthesis Speci�cations. We

provide a proof for the correctness of the construction from Sect. V. We

provide a proof for the optimality of the encoding.

1 Construction (extended with special cases)

Recall that Step I translates a trigger into two DSFAs A1 and A2. We now repeat
Step II with two special cases (the paper shows the most general case � case
(3)).

Step II (extended with special cases (1) and (2)) Given the two DSFAs,
A1 and A2, we consider three cases.

Case 1. ε ∈ L(A2). In this case, the trigger is trivially satis�ed by any
in�nite play. Hence, we do not need to add anything to the game structure and
to the GR(1) formula.

Case 2. ε /∈ L(A2), but ε ∈ L(A1). In this case, an in�nite play π satis�es
the trigger i� it can be written as π = w0w1w2 . . . where each wi ∈ first(L(A2)).
Hence, intuitively, we use A2 to track the play, and each time A2 accepts, we
wish to go back to the initial state, to check whether it will reach an accepting
state again. Hence, one may suggest to redirect every transition to F2 into q20
instead, and to mark q20 as a single accepting state. However, this suggestion is
incorrect since it may produce an SFA that accepts plays that do not satisfy the
trigger. This happens when q20

w→ q20 for some w 6= ε. By marking q20 as accepting,
the SFA will accept the play wwww · · · , although it does not satisfy the trigger.

To �x this problem, we add a new initial state qini to the DSFA, with the
same outgoing transitions as q20 , and redirect transitions to F2, into the added
initial state. The construction is as follows. Let

• I = {(qini, assrt , q) : (q20 , assrt , q) ∈ δ2},
• δ2F2 = {(q, assrt , p) ∈ δ2 : q ∈ Q2 \ F2, p ∈ F2}, and
• δ2qini

= {(q, assrt , qini) : ∃p((q, assrt , p) ∈ δ2F2)}.



The trigger DSFA is Atrig = (Qtrig = (Q2 \ F2) ∪ {qini},
δtrig = (δ2 \ δ2F2) ∪ δ2qini

∪ I, q0 = qini ,Ftrig = {qini}).
Case 3. ε /∈ L(A2) and ε /∈ L(A1). In this case, an in�nite play π satis�es

the trigger i� one of the following holds:

(3.1) π can be written as π = w0w1w2 · · · , where each w2i ∈ first(L(A1)) and
each w2i+1 ∈ first(L(A2)).

(3.2) π can be written as w0w1 · · ·w2j+1w
′, where each w2i ∈ first(L(A1)), each

w2i+1 ∈ first(L(A2)), and no pre�x of w′ is in first(L(A1)).

Therefore, in this case, we concatenate the pre�x and su�x DSFAs. Whenever
A1 accepts, we go to the initial state of the su�x DSFA, and whenever A2

accepts, we go to the initial state of A1. A play π satis�es the trigger i� its
computation (a) traverses between A1 and A2 in�nitely often, or (b) from some
point, never leaves A1. Hence, we redirect transitions to F1 into q20 , redirect
transitions to F2 into q10 , and mark all states of A1 as accepting.

The formal construction is as follows. Let

• δ1F1 = {(q, assrt , q′) ∈ δ1 : q ∈ Q1 \ F1, q′ ∈ F1},
• δ1

q20
= {(q, assrt , q20) : ∃q′((q, assrt , q′) ∈ δ1F1)},

• δ2F2 = {(q, assrt , q′) ∈ δ2 : q ∈ Q2 \ F2, q′ ∈ F2}, and
• δ2

q10
= {(q, assrt , q10) : ∃q′((q, assrt , q′) ∈ δ2F2)}.

Then, Atrig = (Qtrig = (Q1 ∪ Q2) \ (F1 ∪ F2),
δtrig = ((δ1 \ δ1F1) ∪ δ1q20 ) ∪ ((δ2 \ δ2F2) ∪ δ2q10 ), q0 = q10 ,Ftrig = Q1 \ F1).

2 A Correctness Proof for the Construction in Section V

We start by proving that Atrig is indeed deterministic.

Lemma 1. Atrig is a DSFA.

Proof. We prove only for case 3, as the proof for case 2 is similar. Assume,
towards a contradiction, that (q, assrt1, p1), (q, assrt2, p2) ∈ δtrig , p1 6= p2, but
(assrt1∧assrt2)6≡false. W.l.o.g., assume that q ∈ Q1. Since A1 is deterministic,
these are not �old� transitions. In addition, since p1 6= p2, by the construction,
not both are �new� transitions either thus, w.l.o.g., (q, assrt1, p1) ∈ δ1 (�old�)
and (q, assrt2, p2) ∈ δ1q20 (�new�). Therefore, for some p ∈ F1, (q, assrt2, p) ∈ δ1.
In addition, since (q, assrt2, p1) ∈ δtrig , (q, assrt2, p1) /∈ δ1F1 (othwerwise, the
construction removes it) thus p1 6= p. We get that A1 is not deterministic, in
contradiction to our assumptions.

Now, we argue that our construction is correct.

Lemma 2. Let π be an in�nite play. π |= trig i� the computation of Atrig on
π traverses F in�nitely often.

2



Proof. We prove only for case 3, as case 1 is trivial, and the proof for case 2 is
similar. First, we note that since ε /∈ L(A1)∪L(A2), q10 /∈ F1, and q20 /∈ F2 (and
thus, in particular, the constructions are well de�ned). Now, by the construction
of Atrig , we observe that the following hold for a word w ∈ V (V)∗:

• w ∈ first(L(prefix )) i� q0 = q10
w→ q20 , and, excluding the �nal state q20 , the

computation does not traverse any state of Q2.
• w ∈ first(L(suffix )) i� q20

w→ q10 = q0, and, excluding the �nal state q10 , the
computation does not traverse any state of Q1.

Consequently, for an in�nite play π, we have

• π = w0w1 · · · where each w2i ∈ first(L(prefix )), and each w2i+1 ∈
first(L(suffix )) i� the computation ofAtrig on π traversesQ

1
0\F1 andQ2

0\F2

in�nitely often.
• π = w0w1 · · ·w2j+1w

′ where each w2i ∈ first(L(prefix )), each w2i+1 ∈
first(L(suffix )), and no pre�x of w′ belongs to first(L(prefix )) i�, from some
point, the computation of Atrig on π never leaves Q1

0 \ F1.

Therefore, π |= trig i� the computation ofAtrig on π traverses Ftrig = Q1\F1

in�nitely often, as required.

3 Optimality of the Encoding: Proof of Theorem 4.5

To provide a rigorous proof, we �rst provide precise de�nitions.

De�nition 1. Let V be a set of Boolean variables and P ⊆ (2V)ω a property
over V. An encoding of P is an LTL formula ψ over V ∪ AUX , where AUX is
a set of boolean variables, disjoint to V, such that:

1. For π ∈ (2V∪AUX )ω, if π = s0, s1, . . . |= ψ, then π|V = s0∩V, s1∩V, · · · ∈ P .
2. For π ∈ (2V)ω, if π = s0, s1, · · · ∈ P , then π can be extended into π′ =

s0 ∪ a0, s1 ∪ a1, . . . over V ∪AUX , such that π′ = ψ.3

De�nition 2. A GR(1) encoding, a special case of LTL encoding, is a formula
of the form init ∧ safe ∧ justice where:

1. init is an assertion over V ∪AUX .
2. safe is an assertion over V ∪AUX ∪ {X(v) : v ∈ V ∪AUX }.
3. justice = ∧ki=1GF(asrt i) where each asrt i is an assertion over V ∪AUX .

We are ready to show that our encoding is optimal.

Theorem. No GR(1) encoding adds less than log(|Q1| + |Q2| − 2) auxiliary
variables.

3 For synthesis purposes, it makes sense to require that a unique extension exists. We

did not add this assumption as our proof works without it.

3



Proof. Take V = {v}. For k > 1, consider the trigger [true]{2k−1}|=>[v]. That
is, the trigger formulates the requirement that v must hold every 2k steps. The
left RE is accepted by a 2k-state DSFA, and the right RE by a 2-state DSFA.
Our encoding adds k = log(2k) variables (since the construction omits the two
accepting states), and, to prove the claim, we show that every GR(1) encoding
adds, at least, k variables.

Assume towards a contradiction that ψ = init ∧ safe ∧ jutice is a GR(1)
encoding that adds k−1 variables, AUX . Take π = s0, s1, · · · ∈ (2V)ω such that
si = v i� i mod 2k = 2k−1. In more detail, si = {v} when i mod 2k = 2k−1,
and si = ∅ otherwise. Therefore, π |= [true]{2k−1}|=>[v] and thus can be
extended into π′ = (s0 ∪ a0), (s1 ∪ a1), · · · ∈ (2V∪AUX )ω, π′ |= ψ.

Consider the states (s2k−1 ∪ a2k−1), (s2k ∪ a2k), . . . , (s2k+1−1 ∪ a2k+1−1). In
this subsequence of π′, only the �rst and last states satisfy v. Furthermore, by
the pigeonhole principle, the states a2k , . . . , a2k+1−2 are not all di�erent. That
is, for some 0 ≤ t1 < t2 ≤ 2k − 2, a2k+t1 = a2k+t2 . To achieve a contradiction,
we construct a third play π′′, by duplicating the cycle that starts with (s2k+t1 ∪
a2k+t1) and ends with (s2k+t2 ∪ a2k+t2). This is indeed a cycle since a2k+t1 =
a2k+t2 , and s2k+t1 = s2k+t2 = ∅. The resulting play satis�es ψ, but it does not
satisfy the trigger.

Formally, we take

π′′ = (s0 ∪ a0), . . . , (s2k−1 ∪ a2k−1), . . . ,
(s2k+t1 ∪ a2k+t1), . . . , (s2k+t2−1 ∪ a2k+t2−1),

(s2k+t1 ∪ a2k+t1), . . . , (s2k+t2−1 ∪ a2k+t2−1),

(s2k+t2 ∪ a2k+t2), . . . , (s2k+1−1 ∪ a2k+1−1), . . .

By duplicating the subsequence, (s2k+t1 ∪a2k+t1), . . . , (s2k+t2−1∪a2k+t2−1), the
assertion [v] does not hold for 2k − 1 + t2 − t1 ≥ 2k consecutive states, and thus
π′′ 6 |=[true]{2k−1}|=>[v]. However, we still have π′′ |= ψ (note that π′′ |= safe,
since every transition in π′′ also occurs in π′). Therefore, ψ does not encodes the
trigger, in contradiction to the assumption. ut

We do not know of lower bounds for general LTL encoding of trig-
gers. However, we note a sort of a trade-o� between the number of aux-
iliary variables and the �hardness" of the encoding. Speci�cally, the trig-
ger [true]∗((([true]∗[a]){k})&([!b]∗))|=>[false] adds log(k) variables with our
GR(1) encoding. As the property it expresses can be written in LTL (see
Sect. 3.3), it does not require any auxiliary variable with LTL encoding. How-
ever, as we mentioned in Sect. 3.3, any LTL formula that is equivalent to this
trigger has k nested instances of the until operator, and thus constitutes a dif-
�cult instance for writing and for an LTL synthesizer. This suggests that the
deprivation of auxiliary variables via LTL encoding may not be worthwhile.

4


	Supporting Materials for: Triggers for Reactive Synthesis Specifications

