On Well-Separation of GR(1) Specifications

Shahar Maoz
School of Computer Science
Tel Aviv University, Israel

ABSTRACT

Specifications for reactive synthesis, an automated proce-
dure to obtain a correct-by-construction reactive system,
consist of assumptions and guarantees. One way a controller
may satisfy the specification is by preventing the environ-
ment from satisfying the assumptions, without satisfying the
guarantees. Although valid this solution is usually undesired
and specifications that allow it are called non-well-separated.

In this work we investigate non-well-separation in the con-
text of GR(1), an expressive fragment of LTL that enables
efficient synthesis. We distinguish different cases of non-
well-separation, and compute strategies showing how the
environment can be forced to violate its assumptions. More-
over, we show how to find a core, a minimal set of assump-
tions that lead to non-well-separation, and further extend
our work to support past-time LTL and patterns.

We implemented our work and evaluated it on 79 specifi-
cations. The evaluation shows that non-well-separation is a
common problem in specifications and that our tools can be
efficiently applied to identify it and its causes.

CCS Concepts

eSoftware and its engineering — Formal methods;

Keywords

reactive synthesis, GR(1), well-separation, assumptions

1. INTRODUCTION

Reactive synthesis is an automated procedure to obtain
a correct-by-construction reactive system from its temporal
logic specification [22]. Rather than manually constructing
an implementation and using model checking to verify it
against a specification, synthesis offers an approach where
a correct implementation of the system is automatically ob-
tained for a given specification, if such an implementation
exists. In the case of reactive synthesis, an implementation

Jan Oliver Ringert
School of Computer Science
Tel Aviv University, Israel

is typically given as a controller, i.e., an automaton that ac-
cepts input from the environment (e.g., from sensors) and
produces the system’s output (e.g., commands for actuators)
to always satisfy the specification.

One challenge for applying reactive synthesis to software
engineering practice relates to the process of writing the
specification, which typically consists of assumptions and
guarantees. Assumptions play an important role as they de-
scribe the possible environments a system has to operate in.
One way a controller may satisfy the specification is by pre-
venting the environment from satisfying the assumptions,
without satisfying the guarantees. Although valid, this vac-
uous solution to the reactive synthesis problem is usually
undesired. Following Klein and Pnueli [13], we call specifi-
cations that allow this solution non-well-separated.

In this work we investigate non-well-separated specifica-
tions in the context of GR(1), a fragment of LTL, which
has an efficient polynomial time symbolic synthesis algo-
rithm (6] [21] and whose expressive power covers most of the
well-known LTL specification patterns of Dwyer et al. [9,
16]. We distinguish different cases of non-well-separation,
and compute strategies showing how the environment can
be forced to violate its assumptions. Moreover, we show
how to find a core, a minimal set of assumptions that lead
to non-well-separation, and further extend our work to sup-
port past-time LTL and patterns.

Specifically, first, we present an algorithm for the diag-
nosis of non-well-separated environment specifications (see
Sect. . The algorithm checks for well-separation and
distinguishes several cases: it identifies whether the envi-
ronment can be forced to violate its assumptions from all
initial or only from some reachable states, and whether the
safety or the liveness assumptions can be forced to be vio-
lated. The distinction between the different cases is impor-
tant for the following strategy synthesis: in case our algo-
rithm identifies non-well-separation, we synthesize strategies
that demonstrate how the environment can be forced to vi-
olate its assumptions (see Sect. .

Second, we define and show how to compute a non-well-
separated core, a minimal subset of assumptions that already
makes the environment specification non-well-separated (see
Sect. . As shown in our evaluation, see below, the core is
indeed typically much smaller than the original set of as-
sumptions, facilitating better focus on the reasons for non-
well-separation.

Finally, we show in Sect. [6-1] how the above can correctly
handle extensions of the specification language with past-
time LTL [6] and LTL specification patterns [16]. We present

enum enum
MotorCmd LiftCmd
FWD LIFT
STOP DROP
TURN NIL
BWD

Figure 1: A forklift and its controller Controller

further extensions in Sect. [6l

Together, our analyses serve as powerful debugging tools
for specifications, which can assist in finding and under-
standing the reasons for non-well-separation in reactive syn-
thesis specifications.

We have implemented the above in our GR(1) synthe-
sis framework, on top of JTLV [23]. We present evaluation
of the diagnosis algorithm and the non-well-separated core
computation on 79 specifications created by students who
took a six month project class on reactive synthesis. The
evaluation shows that non-well-separation appears in many
specifications, that our diagnosis algorithm is efficient, and
that non-well-separated cores effectively reduce the set of
assumptions one has to consider when trying to understand
the reasons of non-well-separation. We describe the evalua-
tion in Sect. [0

Some previous works suggested criteria for environment
specifications susceptible to being forced to violate assump-
tions [5} 18 |13]. Our work is partly inspired by these works.
These works, however, did not consider algorithms and au-
tomated means for debugging the problematic environment
specifications, computing cores etc., and did not evaluate
the problem on a corpus of specifications. Unrealizability
is another common problem of reactive systems specifica-
tions, which can be handled using (counter-)strategies and
a notion of core. However, non-well-separation is very dif-
ferent than unrealizability. It requires the construction of
strategies not only from all initial states but also from some
reachable states. Moreover, its core, as we define it, is made
of assumptions, not guarantees. We discuss related work in

Sect. Bl

2. EXAMPLE

We start off with a running example, adapted from our
specification of a Lego forklift, shown in Fig. |I'}| see |17]. The
forklift has two sensors: one sensor to determine whether it
is at a station and one sensor to detect cargo. It also has
two motors, to drive the forklift and to lift the fork. Values
read by the sensors are provided as inputs to component
Controller and its outputs are commands that control the
motors. All inputs and outputs are typed, e.g., the out-
put mot has type MotorCmd. The datatypes are boolean or
defined as enumerations in Fig.

A team of engineers is writing a specification of the fork-
lift controller to automatically synthesize an implementa-
tion. The main task of the forklift is to traverse an open
area and always eventually deliver cargo; it finds cargo at

Note that this is a real Lego robot that we have built. We
use our synthesis tool and code generation to run it.

l Specification
1| ASM findStat: -- always possible to find a station
2 G F (atStation);
3| ASM samePos: -- same station position when stopped
4 G (mot=STOP -> next(atStation)=atStation);
5| ASM liftCargo: -- lifting clears sensor
6 G (1ift=LIFT -> next(!cargo));
7| ASM dropCargo: -- dropping senses cargo
8 G (lift=DROP -> next(cargo));
9| ASM clearCargo: -- backing up clears cargo
10 G (mot=BWD -> next(!cargo));

Listing 1: Excerpt of an environment specification
for the forklift controller

stations, lifts it, and drops it at other stations. A bene-
fit of synthesizing a controller is that it is guaranteed to
satisfy its specification. However, without any environment
assumptions a forklift controller cannot be synthesized. As
an example, the forklift can not ensure that it will find a sta-
tion to deliver cargo to because the sensors are completely
controlled by the environment. To guarantee the completion
of its task, the forklift has to assume that it will always find
stations. This is expressed in the assumption G F (atSta-
tion) named findStat in Listing [T} 1l. 1-2. The temporal
operator G intuitively stands for always, i.e., at every state,
and F stands for eventually, i.e., within finitely many steps.

Additional assumptions in Listing [T] describe reactions of
the environment to actions of the forklift controller. The
assumption samePos specifies that the value of the station
sensor remains the same if the forklift stops: G (mot=STOP ->
next (atStation)=atStation) (in other words, stations do
not move). The temporal operator next (v) interprets v in
the next time step; here, the next value of atStation must
be equal to its current value. The next three assumptions
follow the same pattern and restrict the expected environ-
ment behavior for handling cargo. When the forklift lifts
cargo the cargo sensor is cleared (assumption liftCargo,
1. 5). When it drops cargo the cargo is detected by the sen-
sor (assumption liftCargo, 1. 7). Finally, the forklift can
clear the cargo by moving backward from it (assumption
clearCargo, 1. 9).

The engineers complete the specification consisting of as-
sumptions and guarantees and successfully synthesize a con-
troller that satisfies all guarantees if all assumptions hold.
However, once the controller is deployed to the forklift the
team observes strange behavior. Sometimes the forklift drops
cargo and behaves chaotic. An engineer finds out that this
happens when the forklift drives backwards while dropping
cargo. Our new well-separation analysis informs her that
the environment can be forced to violate safety assumptions
from all initial states (diagnosed case (P-all, E-safe), see
Sect. . Specifically, one of the assumptions dropCargo or
clearCargo can be forced to be violated. She fixes the prob-
lematic assumptions by changing the assumption dropCargo
from G (1ift=DROP -> next(cargo)) to G (1ift=DROP &
mot!=BWD -> next(cargo)).

After some more runs of the forklift the team observes
that the forklift sometimes stops between stations and does
not continue delivering cargo. It clearly does not continue
to satisfy its guarantees, i.e., some assumption must be vi-
olated. Again, our new well-separation analysis informs the
team that the environment can be forced to violate a jus-
tice assumption from some reachable states (diagnosed case
(P-reach, E-just), see Sect. [I). The reason involves the as-

sumption to always eventually find a station findStat and
the safety assumption samePos (which states that the station
sensor reading does not change when motors are stopped, as
described above). When the forklift is not at a station it
stops and thus forces the environment to violate its liveness
assumption findStat.

This example shows how non-well-separation can lead to
unexpected behavior of a synthesized controller and how a
small set of relevant assumption can be used to explain the
reason for non-well-separation.

3. PRELIMINARIES
3.1 LTL and GR(1)

We repeat some of the standard definitions of linear tem-
poral logic (LTL), e.g., as found in [6], a modal temporal
logic with modalities referring to time. LTL allows engi-
neers to express properties of executions of reactive systems.
The syntax of LTL formulas is typically defined over a set of
atomic propositions AP with the future temporal operators
X (next) and U (until) and the past-time temporal operators
Y (previous) and S (since).

DEFINITION 1. The syntax of LTL formulas over AP is
pu=pl e eVe|Xe | @Up| Yo| @S¢ forpe AP.

For ¥ = 247 a computation u = uou;.. € I¢ is a sequence
where u; is the set of atomic propositions that hold at the
i-th position. For position ¢ we use u,i = ¢ to denote that
¢ holds at position 4, inductively defined as:

u, i =piff p € uy

u,i = ¢ iff u,i @

u, i = o1 V2 iff u,i = @1 or u,i = @2

u, i = X iff u,i+1 =

u, 1 = p1Ug2 iff 3k >4 u, k = 2 and

Vi, <j<k: ujkEep

u, i = Yo iff u,i—1 ¢

e u i = p1Sps2 iff 3k,0 < k <4 u,k = @2 and
Vi k<j<it wjE e
We denote u,0 = ¢ by u = ¢. Additional LTL operators

are defined as abbreviations of the above:

e Fp := true U ¢ (finally)

Gy := —F-gp (globally)

P1Wp2 := (p1Up2) V Gp1 (weak until)

Hp := —(true S—p) (historically)

LTL formulas can be used as specifications of reactive sys-
tems where atomic propositions are interpreted as environ-
ment (input) and system (output) variables. An assignment
to all variables is called a state.

A strategy for an LTL specification ¢ prescribes the out-
puts of a system that from its winning states for all en-
vironment choices lead to computations that satisfy ¢. A
specification ¢ is called realizable if a strategy exists such
that for all initial environment choices the initial states are
winning states. This strategy can be represented as an au-
tomaton called a controller. The goal of LTL synthesis is,
given an LTL specification, to find a controller that realizes
it, if such a controller exists.

GR(1) synthesis [6] handles an assume-guarantee frag-
ment of LTL where specifications contain assertions over ini-
tial states, safety constraints relating the current and next

state, and justice constraints requiring that an assertion
holds infinitely many times during a computation. A GR(1)
synthesis problem consists of the following elements[6]:

e X input variables controlled by the environment

e Y output variables controlled by the system

e 0°¢ assertion over X characterizing initial environment states
e 0% assertion over XU characterizing initial system states
e p°(X UY,X) transition relation of the environment

e p°(XUY, X UY) transition relation of the system

e Jc1. , justice requirements of the environment
® Jici .m justice requirements of the system

We also write environment and system specifications as
tuples (0, p, J). GR(1) synthesis has two different notions of
realizability, which are expressed in the following LTL spec-
ifications [6]. The first and more intuitive notion is called
implication realizability, because all environment assump-
tions imply all system guarantees:

7 =(0°NGp" A\ GFIS) — (0° AGp° A\ GFJ})
i€l..n JjEL.M

The second kind of realizability is called strict realizability:
P = (05— 0°) A (6 = G((Hp) —> p*)A
0°AGp" — ()\ GFJF —» N\ GFJ}))

i€l..n jeEL..M

Realizability of ¢°" implies realizability of ¢ . Speci-
fications for GR(1) synthesis have to be expressible in the
above structure and thus do not cover the complete LTL. Ef-
ficient symbolic algorithms for GR(1) realizability checking
and controller synthesis for ¢°" have been presented in [6]
21]. The algorithm of Piterman et al. [21] computes winning
states for the system, i.e., states from which the system can
ensure satisfaction of ¢®".

3.2 Well-Separation

Klein and Pnueli [13] defined well-separation as a sufficient
property of environment specifications (6°, p°, J¢) such that
realizability of ¢°" is equivalent to realizability of ¢~. A
well-separated environment can satisfy all assumptions from
every reachable state. We repeat the definition of Klein and
Pnueli adapted to our syntax in Def.

DEFINITION 2 (WELL-SEPARATION [13]). A GR(1) en-
vironment specification (0, p®, J¢), is well-separated iff ©°"
has no reachable system winning states for system specifica-
tion (true,true, {false}).

Note that well-separation is defined as a property of the
environment part of the GR(1) specification, i.e., the as-
sumptions, without the guarantees. Intuitively, the sys-
tem specification (true,true, {false}) means that initially
and for every step the system choices are unconstrained
(0° = true = p°) but its justice requirements cannot be sat-
isfied J° = {false}. Winning strategies for ¢°" thus have to
force the environment to violate its assumptions.

Klein and Pnueli [13] showed how to reduce implication
realizability to strict realizability. For the system specifica-
tion in Def. [2] strict realizability ¢*" and implication real-
izability ¢~ both reduce to the LTL formula —(6° A Gp® A
Nic1..n GFJY). The set of states where the environment can
be forced to violate its assumptions can thus be computed
by the standard GR(1) algorithm.

4. DEBUGGING NON-WELL-SEPARATION

We start by arguing why well-separation is desired and
why it is necessary to provide tools for debugging non-well-
separated environment specifications. We then follow with
an analysis of different cases of non-well-separation. These
cases distinguish winning positions and environment specifi-
cation parts that can be forced to violate. The cases on the
one hand present an informative summary of well-separation
of the specification and on the other require different means
to further explain reasons for non-well-separation. We ex-
plain in Sect. how strategies to demonstrate the different
cases of non-well-separation can be computed.

Well-separation is a property of the environment specifica-
tion, i.e., the assumptions in GR(1) synthesis. In most cases
the environment is specified by the same engineer specify-
ing the guarantees of the systenﬂ Non-well-separation is a
problem in the specifications due to two main reasons. First,
controllers that force an environment to violate assumptions
are undesired in general because they do not have to satisfy
their guarantees. Second, we assume that the true environ-
ment (e.g., in the physical world) of the synthesis problem is
well-separated, i.e., cannot be forced to violate its assump-
tions. Thus, it should not be possible to force an environ-
ment to a deadlock or prevent it from satisfying its justice
assumptions. A non-well-separated environment thus points
to a gap or a mismatch between the real environment and
the assumptions describing it, i.e., it points to a problem in
the specification.

Due to its assume-guarantee nature, the GR(1) synthesis
algorithm might exploit non-well-separation and synthesize
controllers that fail in a real environment. Note that accord-
ing to Def.[2]an environment can also be non-well-separated
without a malicious system, i.e., no matter what the system
does the environment has to violate its assumptions. We
consider this again to be an undesirable specification.

We now present approaches to debug non-well-separated
environments by further distinguishing different cases of non-
well-separation and presenting methods that assist engineers
in understanding the reasons for non-well-separation.

4.1 Cases of Non-Well-Separation

We distinguish different cases of non-well-separation based
on two different criteria: winning positions and environment
specification parts.

4.1.1 Winning positions (all or reachable)

Well-separation in Def. 2]is defined based on winning states
for the system specification (true,true,{false}), i.e., the
only way for the system to win is to ensure assumption vi-
olations by the environment. Non-well-separation is weaker
than realizability of ¢°" in Def. Realizability of ¢°" im-
plies non-well-separation. If the environment specification
is realizable but not non-well-separated there exists a state
that can be reached by environment choice from which the
environment can be forced to violate its assumptions. To dis-
tinguish these two cases we define the positions from which
a controller can force the violation of assumption:

P-all force violation from all initial environment choices;
P-reach force violation from some reachable state.

2Exceptions that we do not consider here are for example
specifications derived from existing components.

The first case P-all means that a controller can always
force the environment to violate its assumptions, i.e., it does
not have to satisfy any guarantee. An example of this case
are the two assumption dropCargo and clearCargo shown in
Listing [T} a controller can always force a violation of either
one. The second case P-reach means that during execution
of a controller the environment can reach a state from which
the controller can force it to violate its assumptions, i.e.,
until the state is reached, if ever, all guarantees have to
be satisfied. An example for this case is the combination
of assumptions samePos and findStat from a state with
station = false. It is easy to see that P-all implies P-
reach but not the other way around.

4.1.2 Env. parts (initial, safety, or justice)

To express which part of the environment specification can
be forced to be violated we distinguish the following cases:

E-ini all initial environment choices are invalid (¢ = false);
E-safe force violation of safety assumptions p® (deadlock);
E-just force violation of some justice assumption J; € J°.

Both cases of E-ini and E-safe imply the case of E-just,
i.e., all non-well-separated environment specifications are of
case E-just. An example for E-safe are the two assump-
tions dropCargo and clearCargo while the two assumptions
samePos and findStat are only an example for case E-just.

4.1.3 Summarizing case combinations

When checking all environment parts and the positions
from which each can be violated we obtain 2 * 3 % 3 possible
combinations of cases (E-ini may appear with P-all or be
absent, while the other parts may appear with P-all, P-
reach, or be absent). A combinations of cases might contain
redundancies because one case implies another one, e.g., case
(P-all, E-safe) implies (P-all, E-just) and we can summarize
their combination as case (P-all, E-safe).

More formally, we summarize case combinations by defin-
ing the total orders P-all C, P-reach and E-ini . E-safe .
E-just and their product order on pairs, i.e., the partial or-
der (p1,€1) Cpxe (p2,€2) < p1 Cp p2 Ae1 Ce e2. Finally, we
represent a combination of cases by their smallest elements.
This summarization of case combinations leaves 7 combina-
tions shown in Fig.|2l The only time two cases are reported is
for cases (P-reach, E-safe) and (P-all, E-just) because these
cases are not comparable in the product order.

The representation in Fig. [2| is ordered from the weak-
est case combination at the top, i.e., well-separation, to the
strongest case combination of non-well-separation {(P-all,
E-ini)} at the bottom.

4.1.4 An algorithm to identify the cases

Algorithm [I] presents our algorithm to identify non-well-
separation and the cases along the dimensions of winning
positions and environment specification parts. Its input is
an environment specification (0¢, p¢, J¢) and its output is
a set of cases of non-well-separation. A case of non-well-
separation is reported as a tuple of winning positions P-
all or P-reach and responsible parts of the specification E-
ini, E-safe, or E-just. The algorithm reports summarized
strongest case combinations as discussed in Sect. and
shown in Fig. 2] Note that the algorithm returns an empty
set iff the environment specification is well-separated.

weakest case, ie., _» {}
well-separation

{ (P-reach, E-just)}

/\

{ (P-reach, E-safe)} {(P-all, E-just)}

\/

{ (P-reach, E-safe), (P-all, E-just)}

{ (P-all, E-safe)}
| strongest case of
¥ non-well-separation

((P-all, E-ini)}
Figure 2: Cases of non-well-separation from weakest
case, i.e., well-separation, to strongest case (P-all, E-
ini); the cases (P-reach, E-safe) and (P-all, E-just) are
incomparable

Algorithm 1 Diagnosing non-well-separation cases

if 6¢ = false then

return {(P-all, E-ini)}
end if
define res as Set
reach < reachStates(6°, p°)
wins < sysWinSts((0°, p°, 0), (true, true, {false}))
if wins Nreach # () then

if sysWinAllIni(wins, 6°) then

return {(P-all, E-safe)}

10: end if
11: add (P-reach, E-safe) to res
12: end if
13: win + sysWinSts((6°, p°®, J°), (true, true, {false}))
14: if win Nreach # () then
15: if sysWinAllIni(win,6°) then

16: add (P-all, E-just) to res
17: else if res = () then

18: add (P-reach, E-just) to res
19: end if

20: end if

21: return res

The algorithm starts by first checking case E-ini of non-
well-separation by testing the satisfiability of 8¢. For 6° =
false the system wins from all positions. It then checks case
E-safe by computing the environment reachable states in
line[5] and the system winning states according to Def. [2] but
for J¢* =0 in line@ For an empty set of justice assumptions
a system can only win by violating safety assumptions. The
method sysWinSts(.,.) returns all system winning states,
i.e., the Z fix-point in the GR(1) algorithm of [6]. If any
of the winning states is reachable, the environment is non-
well-separated (1. [7)). In case all initial states are winning
for the system (1. |8) the strongest result is (P-all, E-safe).
Otherwise the algorithm also checks the complete environ-
ment specification including J¢ for possible system winning
states. This second E-just part in lines [[3}20] is analogous
to the first part of case E-safe but the case (P-reach, E-
just) is only added if res is empty, i.e., does not contain the
stronger case (P-reach, E-safe) possibly added in line

The time complexity of Algorithmfor n = |J¢| and state
space size N is in O(nN?) because it uses the GR(1) algo-
rithm of [6] to compute sysWinSts(.,.) and its other opera-

tions sysWinAllIni(.,.) and reachStates(.,.) are in O(NV).
Note that a simple algorithm to check well-separation ac-
cording to Def. [2] without our diagnosis computes the sets
reach (1. nd win (L and checks for an empty inter-
section (1.[14]). The time complexity of this algorithm is also
in O(nN?).

Applied to the example in Listing [} Algorithm [T] reports
{(P-all, E-safe)}. After replacing assumption dropCargo with
its modified version, as suggested in the end of Sect. 2] the
algorithm reports {(P-reach, E-just)}.

4.2 Strategies Forcing Assumption Violation

In addition to identifying and distinguishing the differ-
ent cases of non-well-separation, as a means to further ex-
plain the reasons for non-well-separation to the engineer, we
compute and present concrete strategies that demonstrate
how a system can ensure assumption violations. Different
non-well-separation cases require different strategy compu-
tations. What is common, is that all strategies are con-
structed from the game memory stored during realizability
checking as implemented in the GR(1) algorithm and de-
scribed in [6].

4.2.1 Winning positions (all or reachable)

In case the system can force an assumption violation from
all initial states (case P-all) controller construction is the
same as for regular GR(1) synthesis. A controller constructed
for the system specification (true, true, {false}) shows how
to force assumption violations.

The case P-reach and not P-all is more complicated. If
P-all does not hold a controller does not exist because for
some initial environment choices the environment cannot be
forced to violate assumptions. However, from every state
that is winning for the system — here those that can force
assumption violations — a winning strategy exists and can
be computed from the game memory.

The only difference during strategy computation is the
treatment of initial states. In controller construction for case
P-all the initial states are computed one for every initial
environment choice. Strategy construction from reachable
states in case P-reach starts with all reachable states, i.e.,
possibly multiple assignments to system variables for each
assignment to environment variables.

Understanding reasons for non-well-separation for the case
P-reach might require understanding how the states of the
strategy can be reached from initial states. How these states
are reached might already exhibit environment behavior that
should be restricted by additional assumptions to make the
environment well-separated. To show how a state can be
reached we can simply compute a trace starting with an
initial state and ending with a state in the strategy.

4.2.2 Env. parts (initial, safety, or justice)

In addition to the distinction between cases P-all and
P-reach we distinguish the environment parts that can be
forced to be violated.

Non-well-separation of case E-ini means that the initial
assumptions of the environment are contradicting. In this
case the system has nothing to do to force assumption vio-
lations so there is no need to discuss it further.

To obtain a controller for case E-safe that shows safety vi-
olations only, we have to use the modified environment spec-
ification (0°, p°,0). Otherwise the controller might chose to

strategy from reachable states

\q

controller for all initial

- ! latStation latStation
environment choices cargo=* Icargo
/ mot=STOP mot=STOP
lift=NIL lift=LIFT
-) il
atStation="
cargo=*
mot=BWD
lift=DROP latStation latStation
cargo=* cargo
mot=STOP mot=STOP
lift=DROP lift=LIFT
(a) " (b)) V—

Figure 3: (a) A controller forcing violation of as-
sumptions clearCargo or dropCargo for all initial envi-
ronment choices (case (P-all, E-safe)) and (b) a strat-
egy forcing violation of assumption findStat from
reachable states (case (P-reach, E-just)), for the spec-
ification in Listing

violate a justice assumption in J¢ instead. Strategies for case
E-safe with environment specification (6, p°,) include only
finite computations.

To obtain a strategy for case E-just we simply use the
game memory computed for the check of Def. [2l Strategies
for case E-just might include infinite computations.

4.2.3 Examples

The environment of the example of Sect. |2| shown in List-
ing [1) is non-well-separated of case (P-all, E-safe). A con-

troller that forces assumption violations is shown in Fig.|3|(a).

The initial choices of the environment are not constrained,
i.e., the environment can choose all four possible assignments
to the variables atStation and cargo. The controller has a
single initial state labeled with assignments to environment
and system variables. The symbol * denotes all possible val-
ues of a variable, i.e., the symbolic state in Fig.[3|(a) denotes
four concrete states. The controller assigns mot=BWD forcing
Icargo in the next state and 1ift=DROP forcing cargo in
the next state, i.e., a contradiction and thus an assumption
violation of clearCargo or dropCargo from Listing [I}

In the second part of the example of Sect. [2] the assump-
tion dropCargo from Listing[I] was changed to G (11ft=DROP
& mot!=BWD -> next(cargo)) to resolve the first non-well-
separation case (P-all, E-safe). The modified environment
is non-well-separated of case (P-reach, E-just). A strategy
that forces it to violate assumptions from reachable states is
shown in Fig. [3| (b). The strategy is only defined for states
where the forklift is not at a station and stops. The strat-
egy forces the environment to violate the justice assumption
findStat by stopping forever and thus forcing the environ-
ment to always keep atStation set to false.

5. CORES OF NON-WELL-SEPARATION

Every environment specification (6°, p¢, J¢) consists of a
set of assumptions similar to the ones shown in Listing [I]
The specification elements 6°, p°, and J¢ might result from
many assumptions, e.g., for the specification in Listing [I]
p¢ is the conjunction of assumptions samePos, liftCargo,
dropCargo, and clearCargo. To further assist in debug-
ging non-well-separated environments we compute a mini-
mal subset of the assumptions that demonstrates a reason
for non-well-separation. We call these minimal subsets non-
well-separated cores.

5.1 The Importance of Monotonicity

The notion of a core has appeared in works that address
unrealizability, see e.g. [14, |19]. These works rely on the
monotonicity of unrealizability with regard to adding guar-
antees, to make the core definition meaningful and to al-
low its efficient computation. A definition of core with re-
gard to non-well-separation is however challenging, because
non-well-separation by itself is not monotonic with regard to
adding assumptions. Without monotonicity, the reason for
non-well-separation exhibited by a subset of assumptions is
not necessarily a reason for non-well-separation of the orig-
inal specification.

THEOREM 1 (NON-WELL-SEPARATION NOT MONOTONIC).
Non-well-separation is not monotonic wrt. adding or remov-
imng assumptions.

PROOF. We show counter examples for both cases. (1)
Non-well-separation is not preserved when removing assump-
tions: the non-well-separated environment specification con-
sisting of justice assumption findStat and safety assump-
tion samePos from Listing[T]becomes well-separated when re-
moving assumption samePos. (2) Non-well-separation is not
preserved when adding assumptions: the non-well-separated
environment specification consisting of assumptions find-
Stat, samePos becomes well-separated when adding the as-
sumption G (atStation). [

Def. [2]of well-separation includes both the reachable states
and states winning for the system. This provides different
possible resolutions of non-well-separation in an environ-
ment specification. Intuitively these are (1) weakening as-
sumptions to remove system winning states and (2) strength-
ening assumptions to remove reachable states. Both cases
are demonstrated in the proof of Theorem[l] It is important
to note that these cases are not exclusive. The dependence
on reachable states and winning states makes the property
of non-well-separation not monotonic.

5.2 Non-Well-Separated Core

To address the non-monotonicity challenge, we provide
a stronger definition of core, which relates to the reachable
states of the original complete specification and ensures that
the reason for non-well-separation exhibited by a core is a
reason for non-well-separation of the original specification.

Thus, we define a non-well-separated core to be a min-
imal subset of a specification’s assumptions which can be
forced to be violated from the reachable states of the origi-
nal specification. Given a set of assumptions ASM we denote
the environment specification resulting from it by 03sy, pisu
and Jggy in Def.

DEFINITION 3 (NON-WELL-SEPARATED CORE). A non-
well-separated core for a set of assumptions ASM is a minimal
set C C ASM such that

sysWinSts((0g, pe, Jo), (true, true, {false})) N
reachStates(0jay, pasy) # 0.

Intuitively, we look for a minimal set of assumptions C
that is non-well-separated within the reachable states for
the original set of assumptions ASM. On the one hand this
restriction is natural when debugging non-well-separation of
ASM because it relates only to states relevant to the original

specification. On the other hand the restriction makes the
check monotonic with respect to adding assumptions, i.e.,
for all C C C’> C ASM if C can be forced to violate its assump-
tion in reachStates(fsy, pisn) then the same applies to C’
(and ASM). This makes cores as defined in Def. [3| meaning-
ful because the reason for non-well-separation in the core
C is a reason for non-well-separation in ASM. We show this
monotonicity in Theorem

THEOREM 2 (CORE MONOTONIC). The check for a non-
well-separated core C in Def. @ is monotonic with respect to
adding assumptions from ASM.

PRrROOF. A strategy to force violation of C C ASM in reach-
States(fxsu, pisu) is also a strategy to force violation of C’
with ¢ C ¢’ C ASM in reachStates(O5wy, pisn). Adding
assumptions can only make the environment specification
stronger, i.e., 06 = 605, p& = p¢, and JE C J&. All C win-
ning states in reachStates(f5gy, pfsy) are also C’ winning
states because their successor states in C are deadlocks or
exist in C’, i.e., if a strategy can force a deadlock in C it can
force a deadlock in C’ because pg, = pg. Otherwise there
exists at least one j € J C Jg that can be prevented by a
strategy to violate assumptions C. A winning strategy for C
also prevents j in C’ because pg = p¢ and thus states in C’
have the same ore less successor states not satisfying j. [

The proof of Theorem [2 also shows how to construct a
strategy to force violation of (Ofsy, pisu, Jrsu) from the result
of checking the GR(1) realizability of C.

5.3 Implementation and Example

We implemented the computation of non-well-separated
cores in our synthesis framework based on JTLV [23] using
the delta-debugging algorithm of Zeller [25] to check sub-
sets of assumptions and compute minimal cores according
to Def. [3] After core computation our tools can construct a
strategy as described in Sect. £:2] to demonstrate non-well-
separation and present a minimal set of assumptions to the
engineer.

For the example of Sect. [2]shown in Listing[I] our core cal-
culation algorithm computes the core {1iftCargo, clear-
Cargo}. After the modification of assumption dropCargo as
described in Sect. the core calculation algorithm computes
the core {samePos, findStat}E

6. EXTENSIONS

6.1 Support for Patterns and Past-Time LTL

The LTL fragment of GR(1) is limited to initial con-
straints, safety constraints over the current and next state,
and justice constraints over states to visit infinitely often.
This is a very restricted subset of LTL. However, GR(1)
synthesis is quite expressive because deterministic Biichi au-
tomata can be used as assumptions and guarantees |6]. This
additional expressiveness is achieved by adding auxiliary
variables to the GR(1) synthesis problem. In practice, this
allows GR(1) specifications to include most LTL specifica-
tion patterns of Dwyer et al. [9] as shown in [16] and past-
time LTL as shown in [6].

3Actually, both checks returned the second core, which
is also a core for the first variant. To obtain the core
{1liftCargo, clearCargo} we had to restrict the analysis
to safety parts of the specification as in Algorithm [1} 1. %}

Technically the support of LTL specification patterns and
past-time LTL works by encoding deterministic Biichi au-
tomata or observer automata as additional safety constraints
0%, p* with auxiliary variables A encoding the statespace of
the automata. The acceptance of Biichi automata is encoded
as justice assumptions in J¢ or justice guarantees in J°. Fi-
nally, a system specification for synthesis with patterns and
past-time LTL is updated to (6° A 0%, p° A p®, J®) over the
new system variables) U A.

As an example consider the following assumption using
the response pattern to express that the forklift can find a
station by going forward:

ASM res: G('atStation -> F(atStation | mot!=FWD))

This response formula is not in the GR(1) fragment. It can
however be used in GR(1) synthesis by adding a new Boolean
variable aux to A, adding aux=true to 0, adding next (aux)
<-> ((atStation | mot!=FWD) | aux & atStation) to p“,
and adding aux=true to J°. Similar translations exist for
past-time LTL [6]. The translations have in common that
the auxiliary specification parts 8% and p® and the new vari-
ables A are added on the system side of the specification for
the GR(1) algorithm.

The definition of well-separation in Def. [2| uses the sys-
tem specification (true, true, {false}) and thus does not sup-
port patterns and past-time LTL. When naively applying
Def. |2 to specifications that use patterns or past-time LTL
in assumptions an analysis automatically yields (potentially
false) negatives. For the example of assumption res the
system (true, true, {false}) fully controls the new variable
aux and can thus always prevent the environment justice
aux=true € J°.

We fix this inconsistency between the support for pat-
terns and past-time LTL for GR(1) synthesis and the defi-
nition of well-separation by replacing the system specifica-
tion (true,true, {false}) in Def. [2| with (Ofay, pis, {false})
where Oig and pjsy are the auxiliary initial and safety con-
straints from the translation of patterns and past-time LTL
that appear as part of assumptions in ASM. The reachable
states to consider for well-separation are accordingly reach-
States(0° AOfsy, p° A pisu). We update Algorithm [1) with the
restriction of reachable states in line[5]and the system spec-
ification (Oysy, pisw, {false}) in line |§| and line

In the updated definition of well-separation the assump-
tion res alone will not be identified as a reason for non-well-
separation. The environment can always force aux=true by
either keeping atStation=true or setting atStation=true
after atStation=false.

6.2 Preventing Forced Assumption Violations
via Safety Guarantees

A non-well-separated environment is undesirable because
it might allow synthesis of controllers that force assumption
violations instead of satisfying their guarantees. We have
presented ways to diagnose and debug non-well-separated
environments. In this subsection we consider a different
approach: considering the guarantees of a specification to
prevent the system from forcing assumption violations.

From a methodological point of view fixing a non-well-
separated environment specification should be preferred to
enable reuse and support evolution of the environment spec-
ification. From a pragmatic point of view it might be enough
that a system guarantees to not force the environment to

violate assumptions. Recall that the satisfaction of safety
guarantees until assumptions are violated is part of strict re-
alizability semantics ¢°” but not implication semantics ¢ .

As an example, consider a non-well-separated environ-
ment specification consisting of the assumptions dropCargo
and clearCargo from Listing A strategy to force assump-
tion violation is dropping cargo to require next (cargo) and
driving backwards to require next (!cargo). The following
new guarantee dropStop expresses that the system has to
stop when dropping cargo:

GAR dropStop: G(1ift=DROP -> mot=STOP)

A system satisfying dropStop cannot force a violation of
an environment specification consisting the two assumptions
dropCargo and clearCargo.

More formally, we define a weaker version of well-separation
over the complete specification, i.e., all assumptions and
guarantees.

DEFINITION 4
A GR(1) specification with environment (6°, p¢, J¢) and sys-
tem (0%, p°, J°), is well-separated iff

sysWinSts((0°, p°, J%), (6%, p°, {false})) N
reachStates(0° A 0°, p° A p°) = 0.

Note that well-separation implies well-separation with re-
spect to guarantees, but not the other way around. Also
note that a trivial case of well-separation wrt. guarantees
is unrealizability of the safety part of the system, i.e., when
the environment can force the system to a deadlock before
the system can force an assumption violation.

6.3 Annotating Synthesized Controllers

Finally, we present a complementary approach for helping
to understand non-well-separation by annotating a synthe-
sized controller with traceability information (see [20]) of
the assumptions it tries to violate. Note that we now talk
about controllers synthesized for realizing a GR(1) specifi-
cation (including system guarantees) and not the ones of
Sect. [£:2] synthesized to show non-well-separation.

Given a controller realizing a specification we annotate
every state in the controller with a reason why it was added
to the controller. The annotations link states to guarantees
the controller tries to satisfy or assumptions it tries to pre-
vent from being satisfied. An excerpt of a controller for the
forklift is shown in Fig. 4} The system specification for this
example has two justice guarantees to always eventually pick
up cargo, formally, GF (1ift=LIFT), and to always eventu-
ally deliver cargo, formally, GF (1ift=DROP). The upper left
state in Fig. [satisfies the justice guarantee GF (1ift=LIFT)
and its successor to the right works towards satisfying the
next justice guarantee GF (1ift=DROP). Note that the state
on the bottom right is annotated as trying to prevent the
justice assumption GF (atStation). This annotation helps
to identify undesired behavior caused by non-well-separation
and links it to a responsible assumption.

We have implemented this approach in our synthesis envi-
ronment as an extension of [20] for assumption traceability.

7. EVALUATION

‘We have implemented Algorithm the non-well-separated
core computation of Sect. [f] and the three extensions dis-
cussed in Sect. |§|in our synthesis framework using JTLV [23].

(WELL-SEPARATION WRT. GUARANTEES).

satisfying system W
justice GF (1ift=LIFT)

N .
atStation atStation
cargo lcargo J

working towards system
justice GF (1i£t=DROP)

mot=STOP mot=FWD
lift=LIFT lift=NIL
J -

T l

working towards system

L/

worl trying to prevent
justice GF (1i££=LIFT) K e - environment justice
atStation latStation GF (atStation)
Icargo Icargo
*| mot=FWD [| mot=STOP
lift=NIL lift=NIL
& AN

{

Figure 4: An excerpt of a synthesized controller an-
notated with reasons why states were added during
controller construction

To evaluate the mechanism we suggest for debugging non-
well-separation we consider the following research questions:

R1 Does non-well-separation appear in specifications?

R2 Can diagnosis be run efficiently during development?

R3 Does core computation effectively reduce the number of
assumptions to inspect?

7.1 Material and Execution

Only few GR(1) specifications are available and these were
usually created by authors of synthesis algorithms or exten-
sions thereof. The most popular GR(1) specifications are
AMBA and GenBuf published and used in many works [6,
14| [1]. We consider these specifications not well suited for
our evaluation due to their origin and purpose.

To collect more realistic specifications we have conducted
a project class on reactive synthesis for undergraduate stu-
dents at Tel Aviv University. The task of the students was
to write GR(1) specifications for robotic systems similar to
the case study described in [17] with automation for syn-
thesis and code generation to Lego NXT robots. Students
worked in six teams of two or three students each for the full
duration of a semester. They developed specifications using
an extended version of the AspectLTL tools [18] and stored
these in a version control system. The time between the
first committed specification and the last committed spec-
ification was six month. The typical development cycle of
the students was updating their specification, synthesizing
a controller, and deploying generated code directly on their
robot for validation. The different robots were a color sorter,
an elevator, a humanoid, a self-balancing and remotely con-
trolled robot, and two self-parking cars.

The students had tools for synthesis and code generation
but not for detecting or debugging non-well-separation ex-
cept for the possibility to synthesize controllers annotated
with the controller’s objective as described in Sect. [6-3}

We have collected a total of 86 specifications for six robots
with 2 to 26 revisions per robotEl Seven committed specifica-
tions were syntactically invalid. The 79 valid specifications
have on average 6 assumptions per specification from a sin-
gle case of 0 up to a maximum of 10 assumptions. The state
space (input, output, and auxiliary variables) ranges from
21 t0 217 (median 2%7, third quartile 23%).

“The specifications are available from http://smlab.cs.tau.
ac.il/syntech /separation/.

http://smlab.cs.tau.ac.il/syntech/separation/
http://smlab.cs.tau.ac.il/syntech/separation/

1

[}

WSwrt. G 1

15

V1V93 [1 non-WS
LG 60

1 unreal |

15

X |
Figure 5: An overview of the evaluated specifi-
cations: 19 are well-separated, 60 are non-well-

separated of which 15 are well-separated wrt. guar-
antees of which 5 have unrealizable safety guarantees

7.2 R1: Occurrence of Non-Well-Separation

We have analyzed all 79 syntactically valid specifications
for well-separation with Algorithm [I| extended to support
patterns and past-time LTL as described in Sect.

As a result, only 19 out of 79 environment specifications
were found to be well-separated. The algorithm detected
non-well-separation for 60 environment specifications.

Algorithm [1| diagnosed the following cases of non-well-
separation: 4 times case (P-all, E-safe), 11 times case {(P-
reach, E-safe), (P-all, E-just)}, 12 times case {(P-reach,
E-safe), (P-reach, E-just)}, 26 times case (P-all, E-just),
and 7 times case (P-reach, E-just). These cases do not only
appear in intermediate versions but also in the final submis-
sions of the students.

The tool used by the students implements the more robust
strict realizability semantics ¢°". We have thus also checked
whether including the guarantees in the well-separation check
(described as an extension in Sect. prevents the sys-
tem from exploiting non-well-separation. Indeed, 15 out of
60 non-well-separated environment specifications are well-
separated wrt. guarantees, i.e., the safety guarantees ensure
that the environment cannot be forced to violate assump-
tions. A further check revealed that in 5 out of these 15
cases the well-separation wrt. guarantees is trivially satis-
fied because the safety guarantees are unrealizable. We have
summarized the numbers in an overview in Fig. [5| The left-
most box represents the desired 19 well-separated specifica-
tions while the right boxes represent 60 non-well-separated
specifications. With strict realizability semantics 20 specifi-
cations in the dotted middle box prevent forced assumption
violations (5 trivially by unrealizable safety guarantees).

To answer research question R1: non-well-separation
frequently occurs in environment specifications (60
out of 79 specifications) and in many specifications vio-
lation of an assumption can be forced from all initial
positions (P-all) (41 out of 79 specifications).

7.3 R2: Efficiency of Diagnosis

It is important that the diagnosis of non-well-separation
is fast and can be executed frequently by the engineer. We
have thus measured running times of Algorithm[I]for a diag-
nosis of cases of non-well-separation for the 79 specifications
in our evaluation. Again the algorithm supports past-time
LTL and patterns as described in Sect.

We have run the experiments for measuring diagnosis times
on an ordinary laptop computer with an i7 2.3 GHz CPU
running Windows 10 64Bit, Java 1.7 32Bit, and CUDD 2.4.2
32Bit with automatic variable reordering. Neither our Java
implementation nor CUDD made use of more than one core

of the CPU. The times we report are wall-clock-times mea-
sured by the Java API. We repeated each experiment 12
times and report running times in milliseconds for all 12*79
runs on syntactically valid specifications.

Due to the small size of some specifications many runs
of Algorithm [I| were reported to complete after Oms. The
minimum time and the first quartile of all runs are both Oms.
The median of measured running times is 15ms, the third
quartile is 78ms and the maximum time to run Algorithm
on the specifications was 250ms. As a reference time for
each specification we have also measured synthesis times,
i.e., time of the realizability check and construction of a
symbolic Controllelﬂ We report on the factors that non-
well-separation diagnosis is faster than symbolic controller
synthesis (we removed 452 out of 948 cases where the time of
Algorithm [1| was measured as Oms). The first quartile is at
factor 5 (i.e., non-well-separation diagnosis is 5 times faster
than checking realizability and constructing the controller),
the median at factor 9, and the third quartile is at factor 23.
Only for five very small specifications synthesis was faster
than diagnosis and both times measured were below 16ms.

To answer research question R2: diagnosing non-well-
separation using Algorithm [1| is conveniently effi-
cient, indeed it is in 75% of the cases more than 5
times faster than the synthesis step, which is exe-
cuted frequently during specification development.

7.4 R3: Reduction by Core Computation

We are interested whether the computation of a non-well-
separated core effectively reduces the number of assump-
tions to consider for understanding a reason for non-well-
separation of the environment specification.

We have run our core computation algorithm based on
delta-debugging and Def. [3] as described in Sect. [B] on all 60
non-well-separated specifications. The results of the com-
putation were minimal sets of assumptions consisting of a
single assumption for 45 specifications and of two assump-
tion for 15 specifications. The reduction factor first quartile
is 3, the median is 5, and the third quartile is 6.25.

A non-well-separated core of a single assumption is very
surprising. We expected a set of assumptions that together
presents a non-well-separation problem. We have thus in-
spected some of the specifications with a singleton core and
found out that indeed the assumptions in the core refer to
system variables the environment cannot control. We have
rerun the experiments with all system guarantees accord-
ing to Sect. to ensure that the analysis did not miss
implicit patterns implemented by the students. Except for
the 15 specifications where the guarantees prevent forced as-
sumption violation the cores remained at sizes of one or two
assumptions.

To answer research question R3: Core computation effec-
tively reduces the number of assumptions to con-
sider (by a factor larger than 3 in 75% and larger than 5
in 50% of the specifications).

5For most of the specifications concrete controller construc-
tion was not feasible and students executed symbolic con-
trollers on their robots.

7.5 Discussion and Threats to Validity

It is important to note the limitations of our findings and
threats to their validity. We have based our evaluation on
specifications created by students with no prior experience
in LTL and specification writing.

From diagnosing specifications we found out that 76%
of the specifications are non-well-separated and most non-
well-separated cores consisted of a single assumption. These
rather simple cases of non-well-separation may be due to stu-
dents’ unawareness of the problem of non-well-separation,
which was not part of the teaching during the project. More-
over, non-well-separation did not always lead to a visible
problem because our GR(1) implementation uses the more
robust strict realizability semantics ¢®" and favors progress
over assumption violation during strategy extraction and be-
cause validation by execution on the robot typically did not
exercise many scenarios. Nevertheless, many times students
consulted with us about observed undesired behavior in con-
trollers resulting from non-well-separation, which indicates
that the problem was indeed there, implicitly.

The analysis of multiple revisions of the same specifica-
tion (from the version control system used by the students)
bares the risk of analyzing intermediate specifications that
are more likely to contain problems. Our observations of
development behaviors and the low number of committed
revisions however indicate that most versions were consid-
ered stable by the students before committing them. Nev-
ertheless, our debugging techniques are intended to support
developers during all stages of development, including inter-
mediate versions.

Finally, students might have implemented assumption pat-
terns in the specification that were not identified by our
analysis. The analysis is limited to patterns described in
Sect. To mitigate this threat we have overapproximated
the pattern implementations by considering all guarantees as
described in Sect. [Z2l We still found that 45 out of 60 non-
well-separated specifications remain non-well-separated.

8. RELATED WORK

We give a brief overview of works on the relation between
environment specifications and controllers, debugging mech-
anisms for unrealizable specifications, and vacuity.
Assumptions: Bloem et al. [4] provide an overview and dis-
cussion how assumptions are treated in reactive synthesis.
They argue that most approaches, e.g., GR(1) synthesis |6,
21], insufficiently handle assumption violations. They sug-
gest and later define [5] cooperative synthesis levels where
the highest level ensures that assumptions and guarantees
are always satisfied. Ehlers et al. [10] present cooperative
GR(1) synthesis for one of the levels that ensures that from
every state the environment can satisfy its guarantees. Co-
operative synthesis may fail when regular GR(1) synthesis
does not. Our work on well-separation can help in the con-
text of cooperative synthesis because every controller for a
well-separated specification is cooperative.

Well-separation for GR(1) environments has been intro-
duced by Klein and Pnueli |[13]. They defined this property
to show when the GR(1) semantics of strict realizability and
implication realizability agree. We have argued for the im-
portance of well-separation in general and extended Klein
and Pnueli’s work with more fine-grained analysis of cases,
strategies, a core, implementation and evaluation.

D’Ippolito et al. 8] present GR(1) synthesis for event-

based controllers and define anomalous controllers that sat-
isfy their specification by forcing assumption violations. The
notion of assumption compatibility in the event-based case
is a dual of well-separation. We believe that the techniques
we introduced can be transferred to debug environments in
the event-based case.
Debugging Unrealizability: One may view our work as
using and extending ideas that were recently introduced to
deal with unrealizability (counter strategies, cores), in or-
der to create new means to deal with the challenge of well-
separation. Counter-strategy synthesis for GR(1) and inter-
active execution were presented, e.g., by Cimatti et al. |7],
Konighofer et al. [14], Maoz and Sa’ar for AspectLTL [20]
and for scenarios [19], and Raman and Kress-Gazit [24] in
a robotics domain. Non-well-separation is very different
than unrealizability. Compared to our work on non-well-
separation, counter-strategies for unrealizability focus on the
system part and deal only with the case P-all.

Alur et al. [1] suggest a heuristics for fixing unrealizabil-
ity by adding assumptions obtained from enumerated candi-
dates checked against a counter strategy. The case of well-
separation is different because it is not monotonic and deals
with assumptions only. A dual approach might be possible
for the extension with guarantees defined in Sect. [6.2
Vacuity: Finally, the problem of vacuity as defined by Beer
et al. [3] and studied in many works (e.g., [2, 12, |15]), in the
context of model-checking, can be viewed as related to well-
separation and synthesis. Fisman et al. |[11] have extended
vacuity to specifications where satisfaction is replaced by re-
alizability and witnesses are subformulas. All these works
are however very different than our work in their approach
and motivation. First, a vacuous controller could be syn-
thesized for a non-well-separated specification of case P-alEl
and second, non-well-separation of case P-reach cannot be
detected by checking a controller for vacuous satisfaction.

9. CONCLUSION

In this work we investigated non-well-separation, where
an environment can be forced to violate the assumptions,
in the context of GR(1), an expressive fragment of LTL.
We distinguished different cases of non-well-separation, and
computed strategies showing how the environment can be
forced to violate its assumptions. We further showed how to
find a core, a minimal set of assumptions that lead to non-
well-separation, and extended our work to support past-time
LTL and patterns.

We implemented our work and evaluated it on 79 specifi-
cations. The evaluation shows that non-well-separation is a
common problem in specifications and that our tools can be
efficiently applied to identify it and its causes. Our work is
the first to investigate and implement means to identify and
address non-well-separation. It is also the first to evaluate
non-well-separation on a corpus of specifications.

The work is part of a larger project on bridging the gap
between the theory and algorithms of reactive synthesis on
the one hand and software engineering practice on the other.
As part of this project we are building engineer-friendly tools
for writing and understanding temporal specifications for
reactive synthesis.

SNon-well-separation is necessary but not sufficient for a
controller that is vacuous in the system guarantees.

10.

ACKNOWLEDGMENTS

JOR acknowledges support from a postdoctoral Minerva
Fellowship, funded by the German Federal Ministry for Ed-
ucation and Research. Part of this work was done while
SM was on sabbatical as visiting scientist at MIT CSAIL.
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 638049, SYNTECH).

11.
1]

2]

REFERENCES
R. Alur, S. Moarref, and U. Topcu. Counter-strategy

guided refinement of GR(1) temporal logic
specifications. In FMCAD, pages 26-33. IEEE, 2013.
R. Armoni, L. Fix, A. Flaisher, O. Grumberg,

N. Piterman, A. Tiemeyer, and M. Y. Vardi. Enhanced
vacuity detection in linear temporal logic. In CAV,
volume 2725 of LNCS, pages 368-380. Springer, 2003.
I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh.
Efficient detection of vacuity in ACTL formulaas. In
CAV, volume 1254 of LNCS, pages 279-290. Springer,
1997.

R. Bloem, R. Ehlers, S. Jacobs, and R. Konighofer.
How to handle assumptions in synthesis. In
Proceedings 3rd Workshop on Synthesis, SYNT 2014,
Vienna, Austria, July 23-24, 2014., volume 157 of
EPTCS, pages 34-50, 2014.

R. Bloem, R. Ehlers, and R. Kénighofer. Cooperative
reactive synthesis. In ATVA, volume 9364 of LNCS,
pages 394—410. Springer, 2015.

R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and
Y. Sa’ar. Synthesis of Reactive(1) Designs. J. Comput.
Syst. Sci., 78(3):911-938, 2012.

A. Cimatti, M. Roveri, V. Schuppan, and

A. Tchaltsev. Diagnostic information for realizability.
In VMCAI, volume 4905 of LNCS, pages 52-67.
Springer, 2008.

N. D’Ippolito, V. A. Braberman, N. Piterman, and

S. Uchitel. Synthesizing nonanomalous event-based
controllers for liveness goals. ACM Trans. Softw. Eng.
Methodol., 22(1):9, 2013.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. In ICSE, pages 411-420. ACM, 1999.

R. Ehlers, R. Konighofer, and R. Bloem. Synthesizing
cooperative reactive mission plans. In IROS, pages
3478-3485. IEEE, 2015.

D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and
M. Y. Vardi. A framework for inherent vacuity. In

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

Haifa Verification Conference (HVC), volume 5394 of
LNCS, pages 7-22. Springer, 2008.

A. Gurfinkel and M. Chechik. How vacuous is
vacuous? In TACAS, volume 2988 of LNCS, pages
451-466. Springer, 2004.

U. Klein and A. Pnueli. Revisiting synthesis of GR(1)
specifications. In Haifa Verification Conference
(HVC), volume 6504 of LNCS, pages 161-181.
Springer, 2010.

R. Kénighofer, G. Hofferek, and R. Bloem. Debugging
formal specifications: a practical approach using
model-based diagnosis and counterstrategies. STTT,
15(5-6):563-583, 2013.

O. Kupferman and M. Y. Vardi. Vacuity detection in
temporal model checking. STTT, 4(2):224-233, 2003.
S. Maoz and J. O. Ringert. GR(1) synthesis for LTL
specification patterns. In ESEC/FSE, pages 96-106.
ACM, 2015.

S. Maoz and J. O. Ringert. Synthesizing a Lego
Forklift Controller in GR(1): A Case Study. In Proc.
4th Workshop on Synthesis, SYNT 2015 colocated with
CAV 2015, volume 202 of EPTCS, pages 58—72, 2015.
S. Maoz and Y. Sa’ar. AspectLTL: an aspect language
for LTL specifications. In AOSD, pages 19-30. ACM,
2011.

S. Maoz and Y. Sa’ar. Counter play-out: executing
unrealizable scenario-based specifications. In ICSE,
pages 242-251. IEEE / ACM, 2013.

S. Maoz and Y. Sa’ar. Two-way traceability and
conflict debugging for aspectltl programs. T.
Aspect-Oriented Software Development, 10:39-72,
2013.

N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
reactive(1) designs. In VMCAI volume 3855 of LNCS,
pages 364-380. Springer, 2006.

A. Pnueli and R. Rosner. On the Synthesis of a
Reactive Module. In POPL, pages 179-190. ACM
Press, 1989.

A. Pnueli, Y. Sa’ar, and L. D. Zuck. JTLV: A
framework for developing verification algorithms. In
CAV, volume 6174 of LNCS, pages 171-174. Springer,
2010.

V. Raman and H. Kress-Gazit. Explaining impossible
high-level robot behaviors. IEEE Transactions on
Robotics, 29(1):94-104, 2013.

A. Zeller. Yesterday, my program worked. today, it
does not. why? In ESEC/FSE, volume 1687 of LNCS,
pages 253-267. Springer, 1999.

	Introduction
	Example
	Preliminaries
	LTL and GR(1)
	Well-Separation

	Debugging Non-Well-Separation
	Cases of Non-Well-Separation
	Winning positions (all or reachable)
	Env. parts (initial, safety, or justice)
	Summarizing case combinations
	An algorithm to identify the cases

	Strategies Forcing Assumption Violation
	Winning positions (all or reachable)
	Env. parts (initial, safety, or justice)
	Examples

	Cores of Non-Well-Separation
	The Importance of Monotonicity
	Non-Well-Separated Core
	Implementation and Example

	Extensions
	Support for Patterns and Past-Time LTL
	Preventing Forced Assumption Violations via Safety Guarantees
	Annotating Synthesized Controllers

	Evaluation
	Material and Execution
	R1: Occurrence of Non-Well-Separation
	R2: Efficiency of Diagnosis
	R3: Reduction by Core Computation
	Discussion and Threats to Validity

	Related Work
	Conclusion
	ACKNOWLEDGMENTS
	References

