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Abstract—Unrealizability is a major challenge for GR(1), an
expressive assume-guarantee fragment of LTL that enables effi-
cient synthesis. Some works attempt to help engineers deal with
unrealizability by generating counter-strategies or computing an
unrealizable core. Other works propose to repair the unrealizable
specification by suggesting repairs in the form of automatically
generated assumptions.

In this work we present two novel symbolic algorithms for
repairing unrealizable GR(1) specifications. The first algorithm
infers new assumptions based on the recently introduced JVTS.
The second algorithm infers new assumptions directly from the
specification. Both algorithms are sound. The first is incomplete
but can be used to suggest many different repairs. The second
is complete but suggests a single repair. Both are symbolic and
therefore efficient.

We implemented our work, validated its correctness, and
evaluated it on benchmarks from the literature. The evaluation
shows the strength of our algorithms, in their ability to suggest
repairs and in their performance and scalability compared to
previous solutions.

I. INTRODUCTION

Reactive synthesis is an automated procedure to obtain

a correct-by-construction reactive system from its temporal

logic specification [31]. Instead of using model checking

to verify a manually constructed implementation, synthesis

offers an approach where a correct implementation of the

system is automatically obtained for a given specification,

if such an implementation exists. In reactive synthesis, an

implementation is given as a controller, i.e., an automaton

that accepts input from the environment and produces the

system’s output to always satisfy the specification (input

from the environment may come from sensors, system’s

output includes commands for actuators). If such a controller

exists, the specification is considered realizable. Otherwise, the

specification is unrealizable, i.e., there exists an environment

that can satisfy all the assumptions while forcing the system

to violate some of its guarantees.

While synthesis from Linear Temporal Logic (LTL) spec-

ifications is generally considered impractical due its high

computational complexity (double exponential in the length of

the formula), in this work we focus on GR(1), an assume-

guarantee fragment of LTL that has an efficient symbolic

synthesis algorithm [3] and whose expressive power covers

most of the well-known LTL specification patterns of Dwyer

et al. [10], [24]. GR(1) specifications include assumptions and

guarantees about what needs to hold on initial states, on all

states (safety), and infinitely often on every run (justice).

One of the main challenges of reactive synthesis in general

and of GR(1) synthesis in particular is to deal with unrealizable

specifications [1], [4], [7], [18], [21]. One way to deal with

unrealizability is repairing it, by automatically generating a

repair in the form of new, additional assumptions, which would

make the specification realizable.

Some existing repair techniques for GR(1) use concrete

counter-strategies (CSs) as a starting point. A concrete CS

shows how an environment can satisfy all the assumptions

while forcing the system to violate some of its guarantees.

Since generating a concrete CS is costly, due to the need to

enumerate all its states, the efficiency of these repair techniques

is limited. Other repair techniques are defined over the more

general LTL. As such, they may suggest repairs that are outside

the GR(1) fragment, and hence cannot be applied in a GR(1)

setting. These limitations hinder the use of existing repair

approaches by engineers.

In this work we present two novel, symbolic repair

techniques that aim to address these limitations. First,

JVTS-Repair. The JVTS [21] is a symbolic representation

of CSs for GR(1), which is computed symbolically, without

the expensive enumeration of concrete states. Given a JVTS,

we generate candidate assumptions that eliminate the CS it

represents. By construction, the nodes of a JVTS represent

symbolically how a CS prevents an implementation. Based on

these nodes, JVTS-Repair creates assumptions that prevent

the CS. By iterating this approach, JVTS-Repair finds

candidates for repairs. Second, GLASS, which does not rely

on CSs but addresses unrealizability in a “global” way, directly

analyzing assumptions and guarantees. GLASS computes a

safety assumption that ensures the safety guarantees can be

satisfied, a justice assumption for each justice guarantee, and

finally an initial assumption to prevent losing initial states.

One strength of JVTS-Repair is its efficiency, thanks to

its symbolic nature. It is also typically capable of generating

many different repairs. It is, however, incomplete; for some

unrealizable GR(1) specifications it cannot suggest a repair

although such a repair exists. One strength of GLASS is that

it is not only very efficient but also complete. We prove

its completeness in the paper (as well as demonstrate it in

our evaluation, see below). Unlike JVTS-Repair, GLASS is

however limited to generating only one repair, and typically

generates a repair that involves more variables than the ones

suggested by JVTS-Repair.

We further extend the two techniques with size minimization

using the notion of repair core, roughly, a locally minimal
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1 env boolean r; // request
2 env boolean c; // clear
3

4 sys boolean g; // grant
5 sys boolean v; // valid
6

7 // sys responds with grant for every request
8 gar respond: pRespondsToS(r, next(g));
9

10 // if cleared or granted no immediate next grant
11 gar ungrant: G ((c | g) -> next(!g));
12

13 // cleared request means not valid
14 gar exclude: G (c -> !v);
15

16 // infinitely often give valid grants
17 gar just: GF (g & v);

Listing 1
UNREALIZABLE REQUEST-GRANT (RG1) SPECIFICATION, ADOPTED

FROM [1], [23]

subset of a repair that is already a repair, and with support for

auxiliary variables, which are common in specifications that

use patterns. We describe these extensions in Sect. VII.

We have implemented all the above ideas in Spectra

Tools [33]. We present an evaluation of our work over

benchmarks taken from the literature in terms of ability to

repair, computation time, and scalability. The evaluation shows

not only that our symbolic repairs are able to repair many

specifications that could not be repaired by previous works, but

also that their computation is significantly faster. See Sect. VIII.

Program repair is an active research area [13]. While we are

partly inspired by works on program repair, we do not deal with

repairing imperative programs but rather with repairing GR(1)

specifications, which are temporal declarative specifications for

reactive systems. Most previous works on repairing unrealizable

GR(1) specifications (e.g., [1], [4]) have relied on a concrete

CS. Our algorithms are symbolic. We discuss related work in

Sect. IX.

II. RUNNING EXAMPLE

We adopt the request-grant running example RG1 used in

previous GR(1) repair papers [1], [23]1. The environment has

two variables, r for requests and c for clearing requests. The

system has two variables, g for grants and v for marking grants

valid. Four guarantees express the system’s requirements. The

first states that a request is answered by a grant within a

positive finite number of steps2. The second prohibits a grant

immediately following a grant or a clear. The third states

that clear and valid are always mutually exclusive. The last

guarantee requires a valid grant infinitely often.

The specification in Lst. 1 is unrealizable, i.e., there exists

no implementation of the system that satisfies all guarantees. A

simple CS demonstrates this: if the environment cancels (c) all

1Although GR(1) specifications typically contain assumptions, this example
contains only guarantees. Nevertheless, we chose to use this example here
because it is simple for presentation in a paper format and has been used in
previous closely related works. Note that our repairs handle general GR(1)
specifications, which indeed typically include assumptions.

2Note that the first guarantee is equivalent to the LTL formula G (r → FXg),
which is not a pure GR(1) guarantee. It is implemented with a response pattern
(following [24]), which introduces a Boolean auxiliary variable that is implicit
in the specification (see also [3] for explicitly introducing the variable). We
discuss patterns and auxiliary variables in Sect. VII-B.

requests (r), it prevents v from becoming true (to satisfy the

third guarantee), and thus a valid grant (which violates the last

guarantee). How can this unrealizable specification be repaired,

i.e., can one add assumptions that will make it realizable?

Our symbolic repair algorithms aim at generating such

assumptions.

Consider the following two assumptions: never cancel a

request immediately in the next state G(r -> !next(c)),

and always eventually issue requests that are not immediately

canceled GF(r & !c). These two assumptions constitute

a repair of the specification, i.e., adding them makes the

specification realizable. Such a repair is an example for the

output automatically generated by our repair algorithms.

III. PRELIMINARIES

A. Linear Temporal Logic (LTL)

We will use one of the standard definitions of linear temporal
logic (LTL), e.g., as found in [3], over present-future temporal

operators X (next), U (until), F (finally), and G (globally), and

past temporal operator H (historically).

For a finite set of Boolean variables V , a computation σ =
s0s1.. ∈ (2V)ω is an infinite sequence of states, i.e., of truth

assignments si to V . We use σ, i |= ψ to denote that the LTL

formula ψ holds at position i ≥ 0 of σ, as defined, e.g., in

[3]. We denote σ, 0 |= ψ by σ |= ψ, and say that σ satisfies ψ.

B. GR(1) Realizability

LTL formulas can be used as specifications of reactive sys-

tems where atomic propositions are interpreted as environment

(input) and system (output) variables. An assignment to all

variables is called a state.

A strategy for an LTL specification ϕ prescribes the outputs

of a system that from its winning states for all environment

choices lead to computations that satisfy ϕ. A specification ϕ
is called realizable if a strategy exists such that for all initial

environment choices the initial states are winning states. The

goal of LTL synthesis is, given an LTL specification, to find a

strategy that realizes it, if one exists.

GR(1) synthesis [3] handles a fragment of LTL where

specifications contain initial assumptions and guarantees over

initial states, safety assumptions and guarantees relating the

current and next state, and justice assumptions and guarantees

requiring that an assertion holds infinitely many times during a

computation. A GR(1) specification S consists of the following

elements [3]:

• X input variables controlled by the environment;

• Y output variables controlled by the system;

• X ′ and Y ′ copies of input and output variables at next step

• θe assertion over X characterizing initial environment states;

• θs assertion over X ∪ Y characterizing initial system states;

• ρe(X ∪ Y ∪ X ′) transition relation of the environment;

• ρs(X ∪ Y ∪ X ′ ∪ Y ′) transition relation of the system;

• Je
i∈1..n justice goals of the environment;

• Js
j∈1..m justice goals of the system.
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A GR(1) specification is (strictly) realizable iff the following

LTL formula is realizable:

ϕsr = (θe → θs) ∧ (θe → G((Hρe) → ρs))∧
(θe ∧ Gρe → (

∧

i∈1..n

GFJe
i →

∧

j∈1..m

GFJs
j )).

Specifications for GR(1) synthesis have to be expressible in

the above structure and thus do not cover the complete LTL.

Efficient symbolic algorithms for GR(1) realizability checking

and controller synthesis have been presented in [3], [30]. The

algorithm of Piterman et al. [30] computes winning states for

the system, i.e., states from which the system can realize ϕsr.

Note that the problem of satisfiability, i.e., the existence of

a computation that satisfies an LTL formula, is usually easier

than the problem of realizability [20].

C. Counter-Strategies and the JVTS

A specification is unrealizable if the environment can force

the system to violate one of its guarantees while satisfying all

the environment assumptions, i.e., the environment has a CS.

A CS can be given by an LTS that for every state prescribes

inputs from the environment that from its winning states for all

system choices lead to computations that satisfy ¬ϕsr. A CS

can ensure ¬ϕsr by either forcing the system to a deadlock

(violation of an initial guarantee or a safety guarantee) or by

satisfying all justice assumptions Je
i and preventing at least

one justice guarantee Js
j forever.

A Justice Violations Transition System (JVTS) [21] is

an acyclic LTS consisting of two types of symbolic states

abstracting the CS, attractor-states (forcing to initial or safety

guarantee violations or to other symbolic states) and cycle-

states (locally preventing at least one justice guarantee). Each

state in the JVTS represents a set of states in some CS, and

each transition in the JVTS represents a set of transitions in

that CS. The JVTS is acyclic, e.g., every play will end in a

deadlock or stay in some cycle state forever.

Definition 1 (Justice Violations TS (JVTS) structure, see [21]

for a complete definition). Given an unrealizable GR(1)

specification, a JVTS is an acyclic LTS 〈Q,T, I, L〉, where:

• Q is a set of symbolic states where each q ∈ Q is either a

cycle-state or an attractor-state,

• T ⊆ Q×Q is an acyclic transition relation,

• I is a set of symbolic initial states, and

• L is a labeling function that labels all states in Q with

assertions over X ∪ Y characterizing the corresponding sets

of concrete states in a CS.

Kuvent et al. [21] showed how to compute the JVTS symbol-

ically and thus efficiently, without the expensive enumeration

of concrete states of a CS.

D. Symbolic Algorithm Notation

Symbolic synthesis algorithms in our context operate on

sets of states and transitions instead of on their explicit

representations. In our algorithms, we use assertions for

symbolic representation of sets of states (over variables X ,

Y) and sets of transitions (over variables X , Y , X ′, and Y ′).
We operate on assertions using the usual Boolean operators, e.g.,

for an assertion ξ over X ∪Y the expression ξ∧θe characterizes

all states in ξ that are also initial environment states. In addition

to standard Boolean operators we also use prime(ξ), which

translates an assertion ξ over X ∪Y to an equivalent assertion

over X ′∪Y ′, and quantification where for V ⊆ X ∪Y∪X ′∪Y ′

existential quantification ξ|∃V yields an assertion without V
that holds iff there exists an assignment to variables in V s.t.

ξ holds (analogous for universal quantification ξ|∀V ).

All operations used in our algorithms have direct implemen-

tations using Binary Decision Diagrams with CUDD [32].

IV. PROBLEM DEFINITION

Intuitively, the repair problem takes as input an unrealizable

GR(1) specification S and produces a set of assumptions that

make S realizable.

A closer look reveals that some (repaired) specifications do

not allow assumptions and guarantees to be satisfied together

and realizability implies that the system forces the environment

to violate assumptions (a case of non-well-separation [25]). We

say a specification S is γ-sat iff all existing assumptions and

guarantees can be satisfied together, i.e., when γ = θe ∧ θs ∧
G(ρe ∧ ρs) ∧∧

i∈1..n GF(J
e
i ) ∧

∧
j∈1..m GF(Js

j ) is satisfiable.

Example 1. The specification from Lst. 1 is γ-sat. Consider
adding the assumption ψ = G(!g -> next(c)) to always
cancel requests if no grant is given. This specification is still
unrealizable but not γ-sat: guarantee ungrant requires that
g becomes false and together with ψ, g stays false forever and
guarantee just cannot be satisfied.

Interestingly, assumption GF(r & !c) from Sect. II makes
the specification realizable. However, after adding this assump-
tion a valid system implementation never grants requests, the
environment has to always cancel, and is forced to violate the
new assumption.

We consider repairs leading to γ-unsat specifications not use-

ful.3 Adding assumptions to a γ-unsat specification preserves γ-

unsatisfiability and we thus consider it as unrepairable (indeed

we have found several unrealizable and γ-unsat specifications

in our evaluation, see Sect. VIII).

Formally, we define the repair problem as follows: given

an unrealizable and γ-sat specification S, find additional

assumptions that will make S realizable and γ-sat. We call

such a set of assumptions a repair.

V. JVTS-BASED SYMBOLIC REPAIR

We now present our first main contribution, namely a

symbolic repair based on the JVTS. We first describe an

algorithm to generate candidate repair assumptions from a

JVTS, and then describe the main repair algorithm, which uses

the first algorithm as a building block. Finally, we discuss

termination and complexity.

3Alur et al. [1] and Cavezza and Alrajeh [4] consider weaker formulas for
satisfiability of their repairs and allow some repairs we consider not useful.
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Fig. 1. Two JVTSs representing CSs for the running example RG1.

A. Generating Assumptions from a JVTS

Given a JVTS, we generate candidate repair assumptions

based on its cycle nodes, attractor nodes, and edges. We build

the assumptions from the symbolic representation of the JVTS,

with the goal of eliminating the CS (and additional, similar

ones) that the JVTS represents. We present this in Alg. 1.

The first loop (lines 1-3) infers justice assumptions from

the cycle nodes of the JVTS by negating the symbolic

representation of the label of the node. The generated justice

assumption eliminates the ability of the environment to violate

the justice of the system represented by the specific JVTS

cycle node. With the new assumptions, the system can avoid

losing in the scenario of the CS represented by the JVTS by

forcing the environment into the cycle.

Example 2. Fig. 1 (left) shows a JVTS computed for our
running example specification RG1 (see Sect. II). The JVTS
has a cycle node in which the justice guarantee just
fails. Negating its label creates the candidate repair justice
assumption φ1: GF (r | (!c & g) | (c & v))

The second loop (lines 4-6) infers safety assumptions from

attractor nodes of the JVTS that have no outgoing edges,

by negating the symbolic representation of the label of the

node. The system can avoid losing by forcing the environment

into such attractor nodes. We ignore attractor nodes that

have outgoing edges because they must produce stronger

assumptions than the ones generated next from outgoing

edges in lines 7-9, and stronger assumptions are removed

by removeStrong in line 10 (see bellow).

Example 3. The JVTS in Fig 1 (left) has an attractor without
outgoing edges. Negating its label creates the candidate repair
safety assumption φ2: G (r | !c | !v )

The third loop (lines 7-9) infers safety assumptions from

each edge (v1, v2) of the JVTS. These assumptions prevent the

transition from node v1 to v2 by negating the conjunction of the

symbolic representation of v1 with the primed representation of

v2, i.e., the equivalent assertion on successor states, that has the

system variables quantified out using existential quantification.

The system can avoid the CS by forcing the environment

into node v1, and choosing an action that would make the

environment respond by trying to enter into node v2. Note that

both v1 and v2 can be either cycle or attractor nodes.

Example 4. The JVTS in Fig 1 (left) has an edge from the
cycle node to the attractor. This results in the generation of

Algorithm 1 InferAssumptionsFromJVTS infers candidate repair
assumptions from a given JVTS.

Require: A JVTS 〈Q,T, I, L〉
Ensure: A set of GR(1) assumptions, each of which eliminate the CS

1: for each cycle node v ∈ Q do
2: add {GF ¬L(v)} to Cand
3: end for
4: for each attractor node v ∈ Q such that ∀v′ ∈ Q : ¬T (v, v′) do
5: add {G ¬L(v)} to Cand
6: end for
7: for each two nodes v1, v2 ∈ Q such that T (v1, v2) do
8: add {G ¬(L(v1) ∧ prime(L(v2)|∃Y )} to Cand
9: end for

10: return removeStrong(Cand)

the candidate repair transition assumption φ3:
G (r | (!c & g) | (c & v) | !next(c) | next(r))

Finally, to avoid redundancy, we return only the weaker

assumptions in the set Cand. Specifically, the method

removeStrong eliminates an assumption from the set iff it

implies one of the other assumptions in the set. Since we only

have justice and safety assumptions, assumption asm1 implies

assumption asm2 when the propositional formula of asm1

implies that of asm2, and either both asm1 and asm2 are of

the same type, or asm1 is a safety assumption and asm2 is a

justice assumption.

Note that by construction, all the generated candidate repair

assumptions are safety or justice assumptions, and in the safety

assumptions for transitions, only environment variables are

primed (since the system variables of v2 are quantified out).

Thus, importantly, the candidate repair assumptions we generate

respect the restricted structure of individual assumptions in a

GR(1) specification.

B. The JVTS-Repair Algorithm

The assumptions inferred from a single JVTS are typically

not enough to ensure realizability, since they only ensure

the elimination of a single CS. On the other hand, adding

assumptions may render a satisfiable specification γ-unsat.

Algorithm 2 uses the algorithm InferAssumptions-
FromJVTS depicted in Alg. 1 for repair generation. It is a

breadth first search on assumptions generated from JVTS CSs.

For a given unrealizable and γ-sat specification, it searches

for a set of assumptions that makes the specification realizable

while keeping it γ-sat, by adding assumption as long as the

specification remains unrealizable and γ-sat.

queue is a queue of sets of assumptions, which represent

repair candidates. We begin by inserting an empty set to

the queue. While queue is not empty, we remove a repair

candidate from it, and add the candidate to the specification. If

the refined specification is γ-sat and realizable, the candidate

is a repair, thus it is returned, and the search ends. If the

refined specification is γ-sat and not realizable, we generate a

JVTS for the refined specification, generate assumptions from

it using InferAssumptionsFromJVTS, and add the unions of

the candidate with each of them to queue.
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Algorithm 2 JVTS-Repair computes a repair, or fails.

Require: An unrealizable and γ-sat GR(1) specification S
Ensure: GR(1) assumptions that make S realizable and γ-sat, if found

1: queue.enqueue(∅)
2: while queue is not empty do
3: candidate← queue.dequeue
4: refined← addAssumptions(S, candidate)
5: if isSatisfiable(refined) then
6: if isRealizable(refined) then
7: return candidate
8: else
9: JV TS ← computeJVTS(refined)

10: assumptions← InferAssumptionsFromJVTS(JV TS)
11: for asm ∈ assumptions do
12: queue.enqueue(candidate ∪ {asm})
13: end for
14: end if
15: end if
16: end while

As adding assumptions to a γ-unsat specification cannot

make it γ-sat, we avoid these search paths. Thus, we never

return repair candidates that make the specification γ-unsat.

Example 5. When we run JVTS-Repair on our γ-sat and
unrealizable example specification in Lst. 1, it first creates
the left hand JVTS in Fig 1. From this JVTS, it generates the
three assumptions φ1, φ2, φ3. With any of these assumptions
the specification remains unrealizable and γ-sat.

The search continues and generates repairs in different ways.
For example, after adding the assumption φ2, Alg. 2 (line 9)
generates the right hand JVTS in Fig 1. From the attractor
at the bottom of this JVTS, it generates the assumption φ4:
G (!r | !c | !v). The set {φ2, φ4} is a valid repair, thus
Alg. 2 returns both assumptions to the engineer.

C. Termination, Complexity, and Soundness

Algorithm 2 always terminates. The while loop in line 2

must terminate, because queue elements increase in the number

of assumptions they contain, each additional assumption causes

the refined specification in line 4 to be semantically different

from the specification without it (because it eliminates at least

one CS that existed before the assumption was introduced),

and there is a finite number of specifications for a given set of

variables. This forms a bound on the size of queue elements,

double exponential in the number of variables (as common

to all CS-based repair approaches [4]), and for each size of

queue elements there is only a finite number of such elements

because the number of assumptions inferred from a JVTS (line

10) is always finite. The computation time for each iteration is

composed from a γ-sat check, a realizability check, a JVTS

computation, and a call to InferAssumptionsFromJVTS. All

these computations are done symbolically. We performed γ-sat

and realizability checks via fixed-point algorithms, polynomial

in the number of assumptions, guarantees, and state space [3].

Note in particular that the computation of a JVTS does not

require the costly computation of a concrete CS. The JVTS is

usually very small, as the number of its cycle nodes is bounded

by the number of justice guarantees, and there are at most two

attractor nodes per cycle node. Accordingly, the time and space

Algorithm 3 GLASS computes a repair.

Require: An unrealizable and γ-sat GR(1) specification S
Ensure: GR(1) assumptions that make S realizable and γ-sat

1: collSat ← collWinStates( G(ρe ∧ ρs) ∧ (
∧

i∈1..n GFJ
e
i ∧∧

j∈1..m GFJs
j ) )

2: badEnvTrans← collSat ∧ ρe ∧ (ρs ⇒ ¬prime(collSat))|∀Y′
3: ρ′ ← G ¬badEnvTrans
4: if isRealizable( addAssumptions(S, {ρ′}) ) then
5: return {ρ′}
6: end if
7: for Js

j ∈ Js do
8: J ← envWinStates( F((Hρe) ∧ ¬ρs) ∨∧

i∈1..n GFJ
e
i ∧ G¬Js

j )
9: add GF ¬J to J ′ unless J = F

10: end for
11: if isRealizable( addAssumptions(S, {ρ′, J ′}) ) then
12: return {ρ′} ∪ J ′
13: end if
14: win← sysWinStates( addAssumptions(S, {ρ′, J ′}) )
15: θ′ ← (θe ∧ θs ∧ win)|∃Y
16: return {θ′, ρ′} ∪ J ′

needed for its computation are usually significantly lower than

those of concrete CSs [21].

The JVTS based repair is sound (see check in Alg. 2, l. 6)

but incomplete; it does not guarantee that a repair would be

found. We evaluate its performance in Sect. VIII.

VI. GLASS REPAIR

We now present our second main contribution, namely a sym-

bolic global assumption (GLASS) repair that computes repairs

in a “global” way, considering all causes of unrealizability,

instead of a “local” way, considering the causes exhibited

by a CS. GLASS addresses reasons for unrealizability on the

levels of safety guarantees, justice guarantees, and initial states,

by computing respective assumptions that ensure realizability.

GLASS is sound and complete, i.e., it computes a repair for all

γ-sat specifications. In addition, GLASS does not suffer from

the double exponential complexity of CS-based approaches

(see Sect. V-C and [4]).

A. Algorithm

Algorithm 3 symbolically computes up to three kinds of

assumptions (in this order): a safety assumption ρ′, a set J ′ of

up to |Js| justice assumptions, and an initial assumption θ′.
First, Alg. 3 symbolically computes all states collSat from

which the system and environment player can collaboratively

satisfy all safety and justice assumptions and guarantees.

Then, it computes all transitions badEnvTrans that start from

collSat and are legal for the environment (ρe) but force all

legal system choices (ρe) to leave the states collSat. The

removal of these bad environment transitions is the safety

assumption ρ′. This part is a symbolic version of safety

assumption computation from [6], adapted for satisfying all

assumptions and guarantees.

Example 6. No safety assumption is necessary for the specifi-
cation in Lst. 1 (collSat is the set of all states and ρ′ in l. 3
introduces no restriction). Consider adding the guarantee G(r
-> next(v)), which contradicts guarantee exclude when
the system grants and the environment cancels in the next step.
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Now, Alg. 3 would generate the assumption G(g -> ((c
& v) | next(!c))), which prevents a cancel in the next
step after a guarantee.

If the assumption ρ′ does not make the specification

realizable, Alg. 3 computes for every justice guarantee Js
j

the states J from which the environment can prevent Js
j while

satisfying all justice assumptions. The negations of these states

are the justice assumptions J ′. The new justice assumptions

in J ′ force the environment to always eventually leave the

states where each Js
j can be prevented. Technically, the LTL

formula in Alg. 3, l. 8 is a sub-formula of the negation of ϕsr

evaluated inside algorithms for computing GR(1) CS. Also,

the set J contains all states from leaf cycle-nodes in a JVTS.

Example 7. Algorithm 3 computes the justice assump-
tion GF((!c -> g & v) & (c -> v)). This assump-
tion alone is a repair for the specification from Lst. 1.

Finally, if the assumptions ρ′ and J ′ are not enough to make

the specification realizable, Alg. 3, l. 15 restricts the initial

environment states to θ′ where a legal system choice exists to

reach a system winning state, i.e., a state to realize the repaired

specification. All computed assumptions are in GR(1).

Example 8. No initial assumption is necessary for the specifi-
cation in Lst. 1. Consider adding the initial guarantee v. In
this case, Alg. 3 computes the initial assumption !c to avoid
violating guarantee exclude in the initial state.

B. Soundness, Completeness, and Minimality

Algorithm 3 is sound and complete as stated in Thm. 1.

Theorem 1. Given an unrealizable and γ-sat GR(1) speci-
fication S, Alg. 3 computes a repair that keeps S γ-sat and
makes it realizable.

Proof. The proof shows that each section of Alg. 3 allows the

system to realize safety, justice, and initial guarantees respec-

tively, and that each new assumption preserves γ-satisfiability.

See supporting materials for details of the proof [37].

The time complexity of Alg. 3 is the same as checking

GR(1) realizability [3]: the evaluations of LTL formulas in l. 1

and l. 8 require at most three nested fixed-point iterations with

at most 2|X∪Y| steps, each.

Although the assumptions θ′, ρ′, and each J ∈ J ′, are mini-

mal (see supporting materials [37]), already the combination

of some J ∈ J ′ might not be minimal, as these sets of states

might not be independent. Importantly, minimality for the

assumptions of GLASS is defined with respect to realizability

from all possible states, whereas minimality for repairs can

also be seen in a “local” way as minimal assumptions that

allow for realizability from at least one state (see Sect. VII-A

and weakness measures in Sect. IX).

VII. IMPORTANT EXTENSIONS AND VARIANTS

A. Repair Core

Both JVTS-Repair and GLASS may yield repairs that

are not minimal in terms of the set of assumptions required

for realizability, i.e., where the set of suggested assumptions

includes a strict subset that is already a repair. In general, we

would like to reduce the number of assumptions consisting the

suggested repair, if possible.4

Example 9. As an example, for the specification from Sect. II,
the JVTS-based repair suggested the repair consisting on the
set of assumptions {φ1, ψ2, ψ3} where ψ2 is:

G (!next(r) | ((r | !c | v) & (!r | c | g)))

and ψ3 is: GF ((c | g) & (!c | v)), which it ob-
tained by first taking the justice assumption φ1 at level 1
of the search (see Example 2), and then taking assumptions
ψ2 and ψ3 at levels 2 and 3 of the search respectively.

To try to reduce the number of assumptions in the repair,

we apply the delta debugging algorithm DDMin [36] to

heuristically compute what we call a repair core, a locally

minimal subset of the assumptions in the suggested repair

that suffices to make the specification realizable. This involves

multiple calls to check realizability, each with a different subset

of additional assumptions. The correctness of applying delta

debugging relies on the following monotonicity: adding an

assumption to a realizable specification preserves realizability.

Example 10. Back to our last example above, when we apply
DDMin to {φ1, ψ2, ψ3} we find that the subset of assumptions
{ψ3} is a repair core: it is sufficient for realizability, and any
strict subset of it (in this case, no assumption at all) will not
make the specification realizable.

Finally, although given the suggested repair, some as-

sumptions that appear already in the original specification

may become unnecessary for realizability, we choose not to

remove any assumptions but only to suggest new ones to

add. Suggesting to remove such redundant assumptions is

independent of the repair problem.

In Sect. VIII, as part of our evaluation, we report empirical

results on the effectiveness of using the repair core to reduce

the size of the repairs we found.

B. Dealing with Auxiliary Variables

Some reactive synthesis tools allow writing specifications

that are not pure GR(1), yet reducible to GR(1) specifications,

e.g., ones that use LTL specification patterns [24]. In this case,

the translation to GR(1) may introduce auxiliary variables,

which were not explicitly declared in the original specification.

Though technically, one could use assumptions that include

auxiliary variables in a repair, such assumptions may not

be desirable because the auxiliary variables do not explicitly

appear in the original specification and thus are unknown to

the engineer who wrote it. To ensure that we do not generate

assumptions with auxiliary variables, we quantify them out

from all symbolic representations.

4Note that we consider a syntactic notion of minimality here, related to the
number of assumptions in the repair, not a semantic one based on implication
or weakness (see related work discussion in Sect. IX.)
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This quantification is performed as follows. In the JVTS-

based repair we existentially quantify auxiliary variables from

all node labels before they are used. In GLASS, we existentially

quantify auxiliary variables from any suggested assumption

when adding it to the specification.

It is important to note that when auxiliary variables are

quantified out, some solutions may be lost. This means

in particular that in this case, the completeness results in

Sect. VI-B will not hold. However, the correctness of repairs

that are found is not affected in this case, i.e., GLASS remains

sound. In Sect. VIII, as part of our evaluation, we report

empirical results on the effect of quantifying out the auxiliary

variables on the ability of GLASS to suggest a repair.

VIII. EVALUATION

We have implemented JVTS-Repair and GLASS in

Spectra Tools [33], based on CUDD [32] as a BDD library.

Our implementation includes also the computation of concrete

CS based on [18], [27], the computation of the JVTS based

on [21], an implementation of the approach by Alur et al. [1],

and the extensions described in Sect. VII.

Means to run our implementation, all specifications used in

our evaluation, and all data we report on below, are available

in supporting materials for inspection and reproduction [37].

We encourage the interested reader to try them out.

We consider the following two research questions. How do

JVTS-Repair and GLASS perform and compare to previous

repair work in terms of

R1 . . . the ability to repair?

R2 . . . (a) computation time and (b) scalability?

Below we report on the experiments we have conducted

in order to answer the above questions, and on additional

observations from the results of these experiments.

A. Corpus of Specifications

Previous works on repairing unrealizable GR(1) specifica-

tions have only used a handful of benchmark specifications for

evaluation, from which we used the following in our evaluation:

the request-grant specification we used as a running example,

RG1, taken from [1], [23]; a similar smaller request-grant

specification, RG2, taken from [6]; and the lift specification

LIFT used in [1], [4]. We further used 3 different sizes of

AMBA (1 to 3 masters), each in the 3 variants of unrealizability

described in [7] (with a justice assumption removed, with a

justice guarantee added, and with a safety guarantee added), i.e.,

a total of 9 AMBA specifications we label AMBA-CIMATTI.

We have used all these in our evaluation.

On top of these, importantly, we used the benchmark

SYNTECH15 [12], which includes a total of 78 specifications

of 6 autonomous Lego robots, written by 3rd year undergraduate

computer science students in a project class taught by the

authors of [12]. Out of the 78 specifications in SYNTECH15,

17 are unrealizable, but 2 of the 17 are γ-unsat (and thus

cannot be repaired by adding assumptions). Therefore below

we report on the remaining 15 specifications. We label them

SYNTECH15-UNREAL.

From the 61 realizable specifications of SYNTECH15, we

produced unrealizable specifications as follows. For each

specification, we first found a core of the assumptions that

maintains realizability [7]. Recall that removing any assumption

from the core makes the specification unrealizable. From each

specification with a core of n assumptions, we created n
unrealizable variants, each of which missing one of the core

assumptions. Some specifications had an empty assumption

core and thus produced no unrealizable variants. In this way,

we produced a total of 144 unrealizable specifications. Out of

these 144 specifications, 8 were γ-unsat because the original

specification was not γ-sat, leaving 136 unrealizable repairable

specifications. We label them SYNTECH15-1UNREAL.

B. Validation
We have systematically and automatically validated the cor-

rectness of our implementation by actually adding the computed

additional assumptions to the unrealizable specifications they

are supposed to repair, and by independently checking that the

repaired specification is indeed satisfiable and realizable, for

all the specifications mentioned in this paper. This validation

includes not only our two symbolic repair techniques but also

our implementation of the algorithm of Alur et al. [1].
The validation increases our confidence in the correctness

of our ideas and their implementation.

C. Experiments Setup
In all cases, we run the three algorithms, AMT13 (our

implementation of the algorithm in [1])5, JVTS-Repair, and

GLASS, until termination or timeout, regardless of repairs

found or not.
Using AMT13 requires setting several parameters (see Alur

et al. [1]). Since we run until termination or timeout, we

ignored the α parameter. We chose the β parameter according

to the heuristic suggested in [1]. The algorithm also requires

the engineer to choose environment variables that appear in

repairs; we always chose all of them.
Using JVTS-Repair and GLASS requires a decision

regarding auxiliary variables. We chose to quantify them out,

taking the risk of loosing some solutions (see Sect. VII-B).
We run all experiments on an ordinary PC, Intel Xeon W-

2133 CPU 3.6GHz, 32GB RAM with Windows 10 64-bit OS,

Java 8 64Bit, and CUDD 3 compiled for 64Bit, using only

a single core of the CPU. We measured the running time to

finding first repair. We excluded the first check of satisfiability

and unrealizability from the measurements (as they are common

and necessary in all approaches).
We used a fixed timeout of 10 minutes. We mark timeouts

by TO. Times we report are average values of 10 runs per

specification per algorithm, measured by Java in milliseconds.

Even though the algorithms we deal with are deterministic, we

performed 10 runs since JVM garbage collection and BDD

dynamic-reordering add variance to running times.6

5Note, we count repairs by AMT13 although they might not be γ-sat.
6Since BDD-based implementations’ performance is sensitive to variable

order, we note that in all our experiments we used CUDD’s automatic variable
reordering. This is common practice in the literature.
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Fig. 2. Total numbers of repaired specifications per algorithm, from
SYNTECH15-UNREAL (left) and SYNTECH15-1UNREAL (right).

Fig. 3. Computation time to suggesting first repair, per algorithm, for all
SYNTECH15-UNREAL and SYNTECH15-1UNREAL specifications, broken
down into ranges.

D. Results: Ability to Repair

Figure 2 presents the results on SYNTECH15-UNREAL and

SYNTECH15-1UNREAL. For each of the three algorithms, we

show the number of specifications for which at least one repair

was found.

The results show that GLASS is able to repair al-

most all specifications in SYNTECH15-UNREAL and

SYNTECH15-1UNREAL. The cases where it fails to suggest

a repair are due only to the introduction of auxiliary variables.

We verified that GLASS always finds a repair when auxiliary

variables are not quantified out. Regarding the two other

algorithms, we observe that JVTS-Repair is able to repair

more specifications than AMT13.

For the AMBA-CIMATTI specifications, GLASS repaired

all, but JVTS-Repair and AMT13 repaired none. For all

other specifications, RG1, RG2, and LIFT, all three algorithms

found a repair.

To answer R1: GLASS repairs all SYNTECH15-UNREAL
and over 80% of SYNTECH15-1UNREAL. JVTS-Repair
repairs 45% while AMT13 repairs only 17% of the above

specifications. Similar observations hold for the other speci-

fications in the corpus.

E. Results: Computation Time and Scalability

Figure 3 shows the computation time of all

SYNTECH15-UNREAL and SYNTECH15-1UNREAL
specifications broken down into several ranges: up to 0.1

seconds, 1 second, 10 seconds, 100 seconds, more than 100

seconds before timeout, and unrepaired either because the

search terminated with no repair or because timeout was

TABLE I
COMPUTATION TIMES TO FIRST REPAIR IN MS, PER ALGORITHM,

FOR SELECTED SPECIFICATIONS WITH GROWING NUMBER OF

ADDITIONAL SYSTEM AND ENVIRONMENT VARIABLES

Specification #vars
Added Environment Variables Added System Variables
GLASS JVTS AMT13 GLASS JVTS AMT13

RG1 (Paper example)

0 13 78 153 13 78 153
+1 12 955 6110 15 65 TO
+2 15 TO TO 10 68 TO
+3 7 TO TO 12 70 TO
+4 9 TO TO 7 70 TO
+5 6 TO TO 1 62 TO

Lift

0 12 53 26 12 53 26
+1 12 89 50 12 59 24
+2 10 975 203 9 57 39
+3 14 125451 193564 9 59 370
+4 10 TO TO 12 54 TO
+5 12 TO TO 10 53 TO

HumanoidLTL 458

0 6 20 148 6 20 148
+1 4 21 249 8 19 348
+2 10 29 426 7 20 1071
+3 9 42 775 12 20 3475
+4 6 59 1558 6 23 11574
+5 4 90 2900 6 21 47233

Gyro Var1 710

0 7 93 142 7 93 142
+1 9 157 630 7 89 TO
+2 9 3931 31777 12 99 TO
+3 10 TO TO 6 85 TO
+4 6 TO TO 10 94 TO
+5 7 TO TO 6 84 TO

reached. Evidently, GLASS repairs most of the specifications

very quickly, while JVTS-Repair does less well, which is

still significantly better than the AMT13 algorithm, both in the

number of specifications repaired and in the computation time.

To examine scalability, we conducted the following experi-

ment. Given a specification, we created 5 additional variants

with 1 to 5 additional Boolean system variables, and 5

additional variants with 1 to 5 additional Boolean environment

variables. We did not constrain the additional variables in any

way. This results in an exponential inflation of the state space,

while having no effect on the unrealizability and the correctness

of suggested repairs. We measured the time required to find

the first repair.

Table I shows the running times, for RG1, Lift, and two

SYNTECH15-UNREAL specifications HumanoidLTL_458
and Gyro_Var1_710, and their variants. The lines in the

table with a zero value for number of added variables refer to

the original specification.

The results show that the GLASS repair computation time

is almost unchanged. Similarly, JVTS-Repair computation

time is almost oblivious to additional system variables, but in

most cases goes up rather fast with the addition of environment

variables. Finally, they show that the computation time of

AMT13, which is based on a concrete CS, scales rather poorly

with the addition of either system or environment variables.

Finally, we performed another experiment for scalability

using specifications we call GFcompleten. These specifica-

tions have an integer variable kval in the range 1..n, and n
guarantees of the form GF kval=i, for 1 ≤ i ≤ n. The state

space in these specifications grows linearly in n rather than

exponentially.

Figure 4 shows computation time to first repair (log scale)

of GFcompleten specifications for 2 ≤ n ≤ 9. Both GLASS
and JVTS-Repair scale well while AMT13 grows quickly,
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Fig. 4. Computation times to first repair for instances of the GFcompleten
specifications. Note that the graph is in logarithmic scale. Missing graph points
for AMT13 are due to the algorithm reaching the timeout.

and fails to find a repair within the timeout for the last two

specifications.

To answer R2: GLASS is able to repair almost all specifi-

cations within 1s. JVTS-Repair and AMT13 are slower.

GLASS scales well and seems to be indifferent to additional

variables. JVTS-Repair scales well only for additional

system variables. AMT13 does not scale well.

F. Results: Additional Observations

Number of variables. In general, one may prefer repairs that

are simpler to understand. As a proxy for simplicity, we report

the number of variables in the repairs we found. We consider

repairs for which all assumptions have up to 5 variables to be

small. We count a variable v if it appears in an assumption.

The algorithms differ significantly in this regard. GLASS has

small repairs only for 47% (of 136 repaired specifications),

JVTS-Repair has small repairs for 57% (of 71), and AMT13
has small repairs for all (of 28) corpus specifications it repairs.

Effectiveness of repair core. We found that the repair core

(see Sect. VII-A) is effective in reducing the size of the repairs.

For GLASS, the repair core is strictly smaller than the initially

suggested repair for 68% of the repaired specifications. For

JVTS-Repair, the repair core is strictly smaller than the

initially suggested repair for 53% of the repaired specifications.

Interestingly, without repair core computation, GLASS offered

small repairs only for 25% of the repaired specifications (as

opposed to 47% reported above), while for JVTS-Repair,

the difference is insignificant.

Additional observations appear in [37].

G. Threats to Validity

We briefly discuss threats to the validity of our results.

Internal. The symbolic computations are not trivial and our

implementation may have bugs. To mitigate this, we performed

a thorough validation using all specifications available to us,

see Sect. VIII-B.

External. First, one of the main threats is the fit of the

generated assumptions to the real world. Note that this threat

equally applies to the previous solutions by Alur et al. and by

Cavezza and Alrajeh [1], [4].

Second, we did not perform a user-study, with engineers, to

examine whether users will find the repairs useful, understand

their meaning, and indeed add them to their specifications.

Third, we have based most of our evaluation on specifications

from the SYNTECH15 set [12], which were created by 3rd

year undergraduate computer science students with no prior

experience in writing LTL specifications. Due to the lack

of other real-world unrealizable specification examples, the

specifications we used were all unrealizable specifications

available to us, and ones we have systematically created from

the realizable ones. Still, note that the scope of our evaluation

is much larger than that of similar and competing works on

reactive synthesis in general and on repair in particular.

IX. RELATED WORK

A. Automatic Program Repair

Program repair is an active research area [13], with two main

classes of approaches, both of which start with a faulty program

and a test suite that reveals a defect. Generate-and-validate

approaches explore candidate programs in a search space

until a program that passes all tests is found (see, e.g., [22],

[15], [17], [34]). Semantics-driven approaches infer program

specifications, translate the repair problem into constraints, and

use solvers to find patches (see, e.g., [16], [28], [29], [35]). A

recent TSE survey [13] discusses 108 program repair papers,

more than 50 of which published between 2013 and 2016.

Almost all focus on imperative languages such as Java and C.

We are partly inspired by this body of work. However, we

do not deal with repairing imperative programs but rather with

repairing GR(1) specifications, which are temporal declarative

specifications for reactive systems. We focus on repair of

unrealizability based on the symbolic generation of new

assumptions. Both our JVTS-based and GLASS techniques can

be viewed as semantics-driven repairs, as they rely on dedicated

symbolic algorithms to solve what can be viewed as a set of

constraints. The iterative nature of the JVTS-based technique

is somewhat similar to a generate-and-validate approach.

B. Repair of GR(1) Specifications

GR(1) synthesis was introduced in [30]. It has since

been used and investigated by many, including, e.g., Kress-

Gazit et al. [19], who used GR(1) in robotics; Maoz and

Ringert [24], who showed GR(1) synthesis for specification

patterns; D’Ippolito et al. [8], [9], who used GR(1) to deal

with fallible domains and non-anomalous event-based behavior

models; and Gritzner and Greenyer [14], who used scenario-

based GR(1) specifications to synthesize executable PLC code.

Several tools support GR(1) synthesis [2], [11], [33].

Some works deal with unrealizable GR(1) specifications

using CSs and cores, but do not consider repair [7], [18], [26].

Below we discuss other works that are most closely related to

ours.
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Li et al. [23] suggested mining assumptions from concrete
CS of unrealizable GR(1) specifications. Strengthening the

specification with these assumptions may make the specification

realizable. Their algorithm enumerates constraints following

three patterns for GR(1) safety and justice assumptions. If the

CS satisfies the enumerated constraint, its negation is added

as an assumption that rules out the CS. Li et al. [23] also

suggest using traces of correct behaviors, if available, to validate

candidates. The generation of constraints is unguided and each

requires model-checking against an automaton of the CS.

Alur et al. [1] proposed another method for semi-automatic

strengthening of assumptions. Again, they analyze a concrete
CS, but their instantiation of template-based candidate as-

sumptions is guided by the CS. The work provides limited

evaluation over three specifications. In contrast to [1] and [23],

our JVTS-Repair uses a symbolic CS representation. We

have re-implemented the approach from [1] in order to be able

to compare it to ours. Our evaluation showed that our symbolic

repairs are able to repair many more specifications that [1]

cannot, and that they are typically much faster.

Cavezza and Alrajeh [4] proposed the generation of inter-

polants as a means to compute new assumptions. Similar to [1],

[23], this work uses a concrete CS. The work provides evalu-

ation over two benchmarks, Lift and AMBA. Unfortunately,

we were unable to compile and run an implementation of this

approach that we can use to directly compare with our symbolic

repairs (as we have done with [1]). However, our evaluation

includes a comparison of results against the same benchmark

specifications reported on in [4] (Lift and AMBA).

Kuvent et al. [21] presented the JVTS, a symbolic represen-

tation of CSs for GR(1). The JVTS is computed symbolically,

without the expensive enumeration of concrete states, it is much

smaller and simpler than its corresponding concrete CS, and it

is annotated with invariants that explain how the CS forces the

system to violate the specification. Using the JVTS for repair

was suggested as future work in [21]. Our JVTS-based repair

follows this suggestion.

Chatterjee et al. [6] presented algorithms for computing

minimal assumptions that repair LTL specifications. The safety

assumption generation of GLASS repair is inspired by their

algorithm, but is adapted for the γ-sat specifications and is

formulated and implemented symbolically. Unfortunately, first,

the computation of minimal liveness assumptions of [6] is

NP-hard, and second, even if provided with these assumptions,

they cannot be expressed in GR(1).

Most recently, Cavezza et al. [5] presented a weakness

measure for GR(1) formulas, which is based on the Hausdorff

dimension, a concept that captures the notion of size of the

omega-language satisfying an LTL formula. The measure

provides a means to quantify the quality of a GR(1) spec-

ification, by measuring how permissive are its assumptions.

As such, it may be useful in evaluating and selecting between

suggested repairs. We leave the evaluation and selection

between suggested repairs of our symbolic repairs, based on

this measure and on other criteria (see Sect. X), to future work.

X. CONCLUSION AND FUTURE WORK

We presented two symbolic repair techniques for unreal-

izable GR(1) specifications. The first algorithm infers new

assumptions based on the recently introduced JVTS. The

second algorithm infers new assumptions directly from the

specification. We further extended our work with repair core,

and with support for specifications that have auxiliary variables.

We implemented our work, validated its correctness, and

evaluated it on benchmarks from the literature, including

151 unrealizable specifications of autonomous Lego robots

(SYNTECH15 [12]). The evaluation shows not only that

our symbolic repairs are able to repair many specifications

that could not be repaired by previous works, but also that

their computation is significantly faster and scales better

against growing number of variables. Both algorithms are

sound. GLASS is also complete but generates a single repair.

JVTS-Repair typically generates many suggested repairs.

We consider the following future research. The fast computa-

tion time allows our JVTS-based repair to effectively generate

many rather than only one candidate repairs. This is a strength

of the JVTS-based approach that is not available in GLASS,

and creates an opportunity to select between or prioritize the

different candidate repairs based on some criteria. Such criteria

may include semantic criteria (e.g., implication or weakness [5])

and other criteria that may affect the readability and usefulness

of the suggested repairs, e.g., size in terms of number of

assumptions and number of variables used in them (arguably,

an engineer will hesitate to use a repair she cannot understand).

Above all, a suggested repair will not be used if it does not

correctly characterize the behavior of the real environment in

which the system should run, and thus the theoretically weakest

or the smallest repairs may not be the best in practice. We leave

this interesting investigation of multiple repairs presentation

and criteria for selection and prioritization to future work.

The work is part of a larger project7 on bridging the gap

between the theory and algorithms of reactive synthesis on the

one hand and software engineering practice on the other. As

part of this project, we are building engineer-friendly tools for

writing and understanding temporal specifications for reactive

synthesis (see, e.g., [24], [25]).
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