
Supporting Materials for
Symbolic Repairs for GR(1) Specifications

Shahar Maoz
Tel Aviv University

Tel Aviv, Israel

Jan Oliver Ringert
University of Leicester

Leicester, UK

Rafi Shalom
Tel Aviv University

Tel Aviv, Israel

Abstract—This document provides supporting materials for
the ICSE’19 paper by the authors titled “Symbolic Repairs for
GR(1) Specifications” [5]. We show proofs for the soundness and
completeness of the algorithm of GLASS repair (preliminaries,
notation, and illustrating examples are in the paper). We further
provide additional observations from the evaluation results.

I. GLASS REPAIR SOUNDNESS AND COMPLETENESS

A. Problem Definition

Intuitively, the repair problem takes as input an unrealizable
GR(1) specification S and produces a set of assumptions that
make S realizable.

A closer look reveals that some (repaired) specifications do
not allow assumptions and guarantees to be satisfied together
and realizability implies that the system forces the environment
to violate assumptions. We say a specification S is γ-sat
iff all existing assumptions and guarantees can be satisfied
together, i.e., when γ = θe∧θs∧G(ρe∧ρs)∧

∧
i∈1..n GF(J

e
i)∧∧

j∈1..m GF(Js
j) is satisfiable.

We consider repairs leading to γ-unsat specifications not
useful. Adding assumptions to a γ-unsat specification preserves
γ-unsatisfiability and we thus consider it as unrepairable.

Formally, we define the repair problem as follows: given
an unrealizable and γ-sat specification S, find additional
assumptions that will make S realizable and γ-sat. We call
such a set of assumptions a repair.

B. GLASS Repair Algorithm

Algorithm 1 symbolically computes up to three kinds of
assumptions (in this order): a safety assumption ρ′, a set J ′ of
up to |Js| justice assumptions, and an initial assumption θ′.

First, Alg. 1 symbolically computes all states collSat from
which the system and environment player can collaboratively
satisfy all safety and justice assumptions and guarantees. Then it
computes all transitions badEnvTrans that start from collSat
and are legal for the environment (ρe) but force all legal system
choices (ρe) to leave the states collSat. The removal of these
bad environment transitions is the safety assumption ρ′. This
part is a symbolic version of safety assumption computation
from [2] adapted for satisfying all assumptions and guarantees.

If the assumption ρ′ does not make the specification
realizable, Alg. 1 computes for every justice guarantee Js

j

the states J from which the environment can prevent Js
j while

satisfying all justice assumptions. The negations of these states
are the justice assumptions J ′. The new justice assumptions

in J ′ force the environment to always eventually leave the
states where each Js

j can be prevented. Technically, the LTL
formula in Alg. 1, l. 8 is a sub-formula of the negation of ϕsr

evaluated inside algorithms for computing GR(1) CS.
Finally, if the assumptions ρ′ and J ′ are not enough to make

the specification realizable, Alg. 1, l. 15 restricts the initial
environment states to θ′ where a legal system choice exists to
reach a system winning state, i.e., a state to realize the repaired
specification.

C. Soundness, Completeness, and Minimality

We discuss the soundness, completeness, and minimality of
the three parts of Alg. 1 in Lemmas 1-3. The algorithm is sound
and complete for unrealizable and γ-sat GR(1) specification
as formalized in Theorem 1. The minimality of the computed
assumptions in the repair is local to each assumption (see
Sect. I-C1).

Lemma 1 (Safety). Given a γ-sat GR(1) specification S Alg. 1,
lines 1-3 compute the unique minimal (in number of transitions)
non-restrictive safety assumption ρ′ to allow the system to
remain in states where γ without initial constraints is satisfiable.
Assumption ρ′ maintains γ-satisfiability.

Proof. Note that the set collSat contains states where γ
without initial constraints is satisfiable. Thus, collSat is not
empty and contains initial states because S is γ-sat.

Sound: The transitions badEnvTrans either are a deadlock
for the system (¬ρs) or lead out of collSat and thus either
eventually lead to a deadlock or they lead to states where
a justice assumption or guarantee cannot be satisfied. By
removing environment transitions out of collSat the system
can ensure to stay in collSat (γ without initial constraints).
Also note that by staying in collSat the safety guarantees ρs

are realized.
Complete: The system cannot be forced to violate safety

guarantees or leave states where γ without initial constraints is
satisfiable because all remaining environment transitions stay
in collSat.

Minimal: Any set of transitions smaller than ρ′ would allow
an environment transition from a state in collSat to either
force the system into a deadlock or to leave collSat.
γ-sat: The set collSat includes all states visited in a

computation satisfying γ (the LTL formula in l. 1 is γ without
initial guarantees and assumptions). The new assumption ρ′

Algorithm 1 GLASS computes a repair given an unrealizable and γ-sat GR(1) specification S.
Require: An unrealizable and γ-sat GR(1) specification S
Ensure: GR(1) assumptions that makes S realizable and γ-sat

1: collSat← collWinStates(G(ρe ∧ ρs) ∧ (
∧

i∈1..n GFJ
e
i ∧

∧
j∈1..m GFJs

j))
2: badEnvTrans← collSat ∧ ρe ∧ (ρs ⇒ ¬prime(collSat))|∀Y′

3: ρ′ ← G ¬badEnvTrans
4: if isRealizable(addAssumptions(S, {ρ′})) then
5: return {ρ′}
6: end if
7: for Js

j ∈ Js do
8: J ← envWinStates(F((H(ρe ∧ ¬badEnvTrans)) ∧ ¬ρs) ∨

∧
i∈1..n GFJ

e
i ∧ G¬Js

j)
9: add GF ¬J to J ′ unless J = F

10: end for
11: if isRealizable(addAssumptions(S, {ρ′} ∪ J ′)) then
12: return {ρ′} ∪ J ′

13: end if
14: win← sysWinStates(addAssumptions(S without ini, {ρ′} ∪ J ′))
15: θ′ ← (θe ∧ θs ∧ win)|∃Y
16: return {θ′, ρ′} ∪ J ′

only removes edges badEnvTrans that lead out of collSat.
Thus, any computation satisfying γ for S also satisfies γ for
addAssumptions(S, {ρ′}).

Note that this part of Alg. 1 is adapted from the minimal
safety assumption computation from [2]. A major difference
to [2] is our change to collaboratively satisfying assumptions
and guarantees instead of collaboratively satisfying the specifi-
cation, i.e., an implication relation between assumptions and
guarantees. A positive effect of this difference is that the new
assumption will also avoid transitions to states where justice
assumptions are no longer realizable, i.e., it will avoid a case
of non-well-separation [4].

Lemma 2 (Justice). Given a γ-sat GR(1) specification S ′ =
addAssumptions(S, {ρ′}) where the system can realize all
safety guarantees, Alg. 1, ll. 8-9 compute a justice assumption
that allows the system to realize the justice guarantees Js

j from
all states where the system can realize the safety guarantees.

Proof. It is possible to satisfy all justice guarantees Js
j because

S ′ is γ-sat.
Sound: Alg. 1, l. 8 computes the states J where the

environment can satisfy all justice assumptions and prevent
the system from satisfying justice guarantee Js

j . Because of
determinancy for LTL winning conditions (the LTL formula
in l. 8 is an inner part of the negated winning condition ϕsr

as used in CS computation) in ¬J the system can satisfy Js
j

if all justice assumptions are satisfied. Thus, the assumption
GF ¬J ensures that the system can satisfy GF Js

j or wins the
GR(1) game because the environment violates assumptions.

Complete: If J is empty Js
j can be realized without

additional assumptions because S ′ is γ-sat and the system
can satisfy all safety guarantees. The set J would contain
all states only if Js

j = F, however S ′ is γ-sat. Thus, the

computation is complete: either Js
j can be realized to begin

with or a repairing assumption GF ¬J is computed.
γ-sat: Every computation π that satisfies γ for S ′ clearly

satisfies GFJs
j (part of γ). The computation π also satisfies the

new assumption GF ¬J because J ⊆ ¬Js
j (right side of l. 8

where left disjunct is empty following Lem. 1), i.e., Js
j ⊆ ¬J

and thus satisfying GFJs
j implies satisfying GF ¬J .

Note the special case where the environment can always
prevent Js

j and satisfy all justice assumptions. In this case the
computed assumption is identical to the guarantee GF Js

j .
On minimality: The set of states J is not minimal for the

property described in Lem. 2. Specifically, Alg. 1, l. 8 computes
some states that are not necessary to ensure that the system can
realize GF Js

j . An example for this are states on the attractor to
a cycle where the environment satisfies all justice assumptions
but prevents Js

j .

Lemma 3 (Initial). Given a γ-sat GR(1) specification S where
the system can realize all safety guarantees according to Lem. 1
and all justice guarantees according to Lem. 2, Alg. 1, ll. 14-
15 compute the unique minimal (in number of states) initial
assumption to make S realizable.

Proof. It is possible to satisfy all guarantees from some
initial states because S is γ-sat. In the given specification
addAssumptions(S, {ρ′} ∪ J ′) the system can further realize
all safety guarantees and all justice guarantees from states
where γ without initial constraints is satisfiable (see Lem. 1
and Lem. 2).

Sound: Alg. 1, l. 14 computes the states from where
the system can realize all guarantees while ignoring initial
guarantees (the computation directly follows [1]). These states
are intersected in l. 15 with common initial states and system
variables are existentially quantified out, i.e., for environment
choices θ′ the system can choose at least one assignment to

variables Y that constitutes a winning state. By adding θ′ as an
initial assumption the system wins from all initial environment
choices.

Complete: The algorithm makes all specifications realizable:
θe ∧ θs ∧win is never empty because the specification is γ-sat.

Minimal: Any set of states smaller than θ′ would leave an
initial choice for the environment to force the system outside
of its winning states.
γ-sat: The set θe∧θ′∧θs is not empty because S was γ-sat.

Any computation satisfying γ for S also satisfies γ with the
addition of θ′ because win contains all states where γ without
initial constraints is satisfiable (see Lem. 1 and Lem. 2).

We combine all lemmas in Thm. 1 about the soundness and
completeness of GLASS repair from Alg. 1.

Theorem 1 (GLASS Repair is Sound and Complete). Given an
unrealizable and γ-sat GR(1) specification S , Alg. 1 produces
a set of assumptions that make S realizable and γ-sat.

Proof. We denote the set of assumptions returned by the
algorithm A.

Sound and Complete: The algorithm always returns a
set of assumptions. If Alg. 1 returns A in line 5 then
addAssumptions(S, A) is realizable (see line 4). If Alg. 1
returns A in line 12 then addAssumptions(S, A) is realizable
(see line 11). Finally, if Alg. 1 returns A in line 16, then
addAssumptions(S, A) is realizable, see Lemma 1-3.
γ-sat: Any set of assumptions returned by Alg. 1 keeps

S γ-sat because all individual parts of the algorithm from
Lemma 1-3 keep γ-sat specifications γ-sat.

1) Minimality Discussion: Note the notion of minimality
in Lem. 1 with respect to states satisfying γ without initial
constraints (collSat) rather than with respect to realizability.
First, some of these states might not be reachable in any
execution of the system and environment. When looking for
minimality for realizability, the transitions from these states
would not be necessary to exclude. Second, there might be
some transitions in badEnvTrans that lead to states where
assumptions have to be violated. Again, for realizability, these
transitions could be removed from badEnvTrans. Neverthe-
less, we believe that the assumptions computed for γ might
lead to better specifications that prevent the environment from
“deciding to violate” assumptions.

Finally, note that minimality for the assumptions of GLASS
is defined with respect to realizability from all possible initial
states (see Lem 3) whereas minimality for repairs can also be
seen in a “local” way as minimal assumptions that allow for
realizability from at least one initial state.

II. EVALUATION RESULTS: ADDITIONAL OBSERVATIONS

We present additional observations from our evaluation.

Number of repairs. JVTS-Repair and AMT13 may produce
more than one repair for a given specification. However, some
of these may be very similar to one another. In this context,
we consider that a repair r1 is weaker than a repair r2 iff the

conjunction of the safeties in r2 implies the conjunction of
safeties in r1, and for each justice in r1 there is at least one
justice or safety in r2 that implies it1. This weakness relation
is a partial order on repairs.

We computed the number of weakest repairs, for repairs
found within the timeout. For SYNTECH15-UNREAL and
SYNTECH15-1UNREAL, the number of weakest repairs found
by JVTS-Repair ranges from 1 to 27 (avg. 5.5, me-
dian 3) and from 1 to 49 (avg. 11.06, median 4), resp.
For SYNTECH15-UNREAL and SYNTECH15-1UNREAL, the
number of weakest repairs found by AMT13 ranges from 1 to
3 (avg. 2.3, median 3) and from 1 to 23 (avg. 3.18, median
1), resp.

We leave the selection between or prioritization of different
candidate repairs to future work.

Well-separation. In well-separated specifications [3], [4] the
environment cannot be forced to violate its assumptions. Non-
well-separation allows for unwanted system implementations.
Thus, when a specification is originally well-separated it may be
preferable to have a repair that maintains well-separation. In this
regard, GLASS and JVTS-Repair have success rates of 68%
and 57% respectively. Interestingly, AMT13 only repaired well-
separated specifications of our corpus, and maintained well-
separation for 50%. Also note that all three algorithms repair the
specifications RG1, RG2, and LIFT, yet only JVTS-Repair
found a well-separated repair for all three, while the other
algorithms found a well-separated repair only for two of them.

1JVTS-Repair and AMT13 produce repairs that do not include initial
assumptions.

REFERENCES

[1] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis
of Reactive(1) Designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

[2] K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Environment
assumptions for synthesis. In F. van Breugel and M. Chechik, editors,
CONCUR 2008 - Concurrency Theory, 19th International Conference,
CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings,
volume 5201 of Lecture Notes in Computer Science, pages 147–161.
Springer, 2008.

[3] U. Klein and A. Pnueli. Revisiting synthesis of GR(1) specifications.
In Haifa Verification Conference (HVC), volume 6504 of LNCS, pages
161–181. Springer, 2010.

[4] S. Maoz and J. O. Ringert. On well-separation of GR(1) specifications.
In FSE, pages 362–372. ACM, 2016.

[5] S. Maoz, J. O. Ringert, and R. Shalom. Symbolic repairs for GR(1)
specifications. In ICSE, pages 1016–1026. IEEE / ACM, 2019.

	GLASS Repair Soundness and Completeness
	Problem Definition
	GLASS Repair Algorithm
	Soundness, Completeness, and Minimality
	Minimality Discussion

	Evaluation Results: Additional Observations
	References

