
A Symbolic Justice Violations 
Transition System for Unrealizable 

GR(1) Specifications

JVTS Tool Session Example

Aviv Kuvent, Shahar Maoz and Jan Oliver Ringert



Running Example Specification

Example Specification 
opened in the Spectra 

Eclipse editor



Generate Symbolic Counter 
Strategy



Right-click on the specification

Choose to generate a symbolic counter-strategy (the JVTS).

Sub-menu of the JVTS plugin



The symbolic 
graph (JVTS) 
view

Select a node

Properties of the selected state, including 
invariants of the node.
This is a cycle node where the system violates 
its justice guarantee Ready: GF ready by 
maintaining ready = false



Concretizing Nodes



Attractor node invariants. The 
invariant “ONCE_8_0” with value 
“true” indicates that the “ready” 
system output was set to “true” at 
some point in the past

Select attractor 
node

Right click on a node gives additional 
options. In order to better understand the 
flow attracting to the lower cycle, we 
choose to concretize this node



Concrete nodes contained in 
the concretized attractor

The concrete graph view. We 
move to it automatically on 
concretizing a JVTS node

Bottom row are nodes reachable in other 
JVTS nodes, identified by the dotted edges 
leading to them

Properties of 
concrete node s4



Select an edge to view its 
properties

Properties of the selected edge. In the 
case of a concrete edge, the invariants 
on it will be the invariants of the 
destination node



Return to symbolic 
graph view

Select an edge 
to view its 
properties

The invariants of a symbolic edge are the 
invariants of all the concrete edges leading 
from the source symbolic node to the 
destination symbolic node



Playing Interactively



Right click on the attractor. Select 
to perform interactive play to 
better understand the flow of the 
counter-strategy represented by 
this JVTS



We choose a concrete node from 
which to start the interactive play

Begin by choosing a variable for which the 
value is not fixed in this JVTS node



Variable “ready” chosen
Choosing a value for the 
variable “ready”



After choosing the value “false” for the 
“ready”, we press “Add Assignment”

Assignment added



The assignment can result in new 
invariants. We press “Fill variable 
choices” to get these invariants.

A new invariant is added



We could click “Choose concrete state” already and get 
a random assignment to the last variable – “docking”. 
Instead we explicitly choose “docking = true” 



After adding an 
assignment of 
the last variable 
(“docking”) we 
move to the 
Concrete Graph 
View

The chosen concrete node

From the invariants we see that this 
node is equivalent to node “s4” when 
we perform the “concrete node” 
operation



Right click on the concrete node and choose 
“Perform Concrete Step” to get s1 successors.
Can also double-click on s1



All s1 successors. If the number of successors was 
greater than 5, a pop up window similar to the 
interactive play window would open, requesting the 
engineer to choose assignments to get a specific 
successor.

s3 invariants. We see that docking
is “false” (satisfying the safety of 
G docking -> !next(docking)), 
and dockRequest is “true”



Double click s3

Successors of s3. Dotted edges indicate 
they’re outside the attractor containing s3.
Red nodes are contained in a cycle JVTS 
node

Invariants of s4. We see that 
dockRequest is now false, when 
it previously was true (s3). 



s5 invariants. Only difference from s4 is in the 
“ready” variable. So system always gives 
“docking” a value of false, in both s4 and s5, 
violating the justice guarantee 
“DockingResponse” which ensures every 
“dockRequest” will eventually have a “docking” 
granted.



Double-click s5, resulting in its 
successors (all of which already 
appear in the graph)



Double click s4, getting its successors. We 
see the cycle JVTS node is comprised only 
of s4 and s5



Switching back to the JVTS view, and 
selecting this cycle node

The invariants indeed include “docking” 
with a value of false, and only the “read” 
variable has no invariant on it 



To understand why system does not set “docking” to true in order 
to satisfy the justice guarantee, we look at s6 invariants (one of 
the cycle successors)

s6 invariants include 
“docking” with a value 
of true.



Looking at the invariants of the other cycle 
successor, s7. It also has “docking” with 
value of true

Double clicking on s6 or s7 does not result in any successors – they 
are dead-end state. From the variable assignments on them we see 
that they violate the safety guarantee G docking -> dockRequest



The dead-end attractor invariants, showing the 
invariants that result in the safety guarantee 
violation 

Selecting the dead-end attractor

Returning to the JVTS view



Preferences: Merging Attractors



We now look at the JVTS tool preferences page 
(Window->preferences). We will remove the Merge 
attractors selection to view the unmerged JVTS



The unmerged JVTS. We see that the 
difference is the attractor between 
cycles is now 3 separate attractors

The invariants of the selected attractor 
show it contains a single concrete node 
(all variables have invariant 
assignments)



Invariants of the second selected 
attractor also show that it contains 
a single concrete node. In it, 
dockRequest is true and the 
system immediately responds with 
setting docking to true



Invariants of the third selected 
attractor. Variable dockRequest is 
again true for all concrete nodes 
contained in it. 



Generate Concrete Counter 
Strategy



Finally we will generate the 
complete concrete counter strategy 
represented by this JVTS



The concrete counter-strategy represented by this JVTS. 
Nodes which are part of a cycle are marked in red, and edges 
between nodes in contained in different JVTS nodes are 
dotted


