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ABSTRACT

Reactive synthesis is an automated procedure to obtain a correct-by-

construction reactive system from its temporal logic specification.

GR(1) is an expressive assume-guarantee fragment of LTL that

enables efficient synthesis and has been recently used in different

contexts and application domains.

In this work we present just-in-time synthesis (JITS) for GR(1), a

novel means to execute synthesized reactive systems. Rather than

constructing a controller at synthesis time, we compute next states

during system execution, and only when they are required. We

prove that JITS does not compromise the correctness of the synthe-

sized system execution. We further show that the basic algorithm

can be extended to enable several variants.

We have implemented JITS in the Spectra synthesizer. Our eval-

uation, comparing JITS to existing tools over known benchmark

specifications, shows that JITS reduces (1) total synthesis time, (2)

the size of the synthesis output, and (3) the loading time for system

execution, all while having little to no effect on system execution

performance.

CCS CONCEPTS

• Software and its engineering→ Formal methods.

KEYWORDS

reactive synthesis, GR(1)

ACM Reference Format:

Shahar Maoz and Ilia Shevrin. 2020. Just-In-Time Reactive Synthesis. In 35th

IEEE/ACM International Conference on Automated Software Engineering (ASE

’20), September 21–25, 2020, Virtual Event, Australia. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3324884.3416557

1 INTRODUCTION

Reactive synthesis is an automated procedure to obtain a correct-

by-construction reactive system from its temporal logic specifica-

tion [33]. Rather than manually constructing an implementation

and using model checking to verify it against a specification, syn-

thesis offers an approach where a correct implementation of the

system is automatically obtained for a given specification, if such

an implementation exists.
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GR(1) is a fragment of linear temporal logic [32] (LTL) that has

an efficient symbolic synthesis algorithm [5, 31] and whose ex-

pressive power covers most of the well-known LTL specification

patterns of Dwyer et al. [12, 23]. GR(1) specifications include as-

sumptions and guarantees about what needs to hold on all initial

states, on all states and transitions (safety), and infinitely often on

every run (justice). GR(1) synthesis has been used and extended in

different contexts and for different application domains, including

robotics [19, 22, 24], scenario-based specifications [28], aspect lan-

guages [27], event-based behavior models [11], hybrid systems [14],

and device drivers [37], to name a few.

The synthesis algorithm in [5], as implemented (with some vari-

ations) in existing GR(1) synthesizers RATSY [4], Slugs [13], and

Spectra [25], consists of two phases. In the first phase, the algorithm

checks for realizability. If the specification is found to be realizable

in the first phase, synthesis continues to the second phase, where

it constructs a controller using memory collected in the first phase.

According to experience reported on in [5] and supported by ev-

idence we report in our evaluation, in many cases the first phase

of realizability checking takes only a small fraction of the total

synthesis time. Most of the time is spent in the second phase of

controller construction.

In this work we introduce just-in-time synthesis (JITS),

a novel means to execute synthesized reactive systems,

which skips the controller construction phase. Instead, it ef-

ficiently stores the memory collected in the first phase of re-

alizability checking, and uses it during system execution to

compute next states, only when they are required. The con-

troller is never constructed. However, importantly, as the

next state computation is performed using thememory that

was collected during realizability checking, JITS keeps sys-

tem execution correct-by-construction.

As JITS skips construction, it is expected to dramatically reduce

the overall synthesis time. Moreover, JITS symbolic representation

of the memory that is required for correct execution, consists of

chains of very similar BDDs, and makes storing it at the end of

synthesis and loading it just before system execution very efficient.

During system execution, at each step, JITS manipulates only a

small number of BDDs, each of relatively small size, and thus the

effect on performance of the just-in-time next states computation

is kept to a minimum.

Beyond performance, from architectural and methodological per-

spectives, JITS decouples synthesis (realizability checking) from

system execution. This decoupling is significant, as indeed, synthe-

sis takes place at development time and is executed on development

machines, while system execution, i.e., the actual running of the

synthesized system, will typically run on very different machines,

e.g., on a robot. The decoupling, which is unique to JITS, enables

flexibility in system execution, and supports, for example, exten-

sions and variants that aim to improve qualitative aspects of the
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execution, such as eagerness, recovery, and configurability. See

Sect. 4.

Finally, JITS is defined for GR(1) and thus seamlessly supports

any specification that is reduced to GR(1). In particular, the use

of JITS is independent of the use of advanced constructs such as

past LTL operators, patterns, counters, etc. as supported, e.g., in

Spectra [25]. Our evaluation of JITS (see below) indeed includes

such rich specifications.

We have implemented JITS on top of the Spectra synthesizer [2]

(using its implementation of realizability checking, ignoring its

implementation of controller construction). To evaluate JITS, we

compared it against existing tools over specifications from publicly

available benchmarks. The results show that JITS outperforms ex-

isting tools in all aspects of synthesis, including time and memory,

and that its outputs of the synthesis phase are smaller and typically

faster to load. In practical terms, it makes the execution of systems

with rather large specifications feasible even on environments with

limited resources. See Sect. 5.

The remainder of the paper is structured as follows. In Sect. 2 we

provide necessary background on GR(1) realizability and controller

construction. In Sect. 3 we present the JITS approach and prove

its correctness. In Sect. 4 we discuss several optional extensions to

JITS. In Sect. 5 we present our evaluations for JITS synthesis and

execution as compared to other tools. Finally, in Sect. 6 and Sect. 7

we discuss related work and conclude.

2 PRELIMINARIES

We recall the notions of realizability and synthesis, GR(1) realizabil-

ity problem, and the controller construction algorithm from [5].

2.1 LTL Realizability and Synthesis

The interaction of a reactive system [16] with its environment is

best seen as a turn-based infinite duration game where in each of

its rounds the environment first chooses an assignment to its input

variables, and the system responds by choosing an assignment

to its output variables. Then, an LTL formula over these Boolean

variables can be used as a specification for the behavior of a desired

reactive system.

We consider reactive systems that can be implemented by con-

trollers of finite size, i.e., by finite Mealy machines that compute

their outputs. A controller realizes an LTL specificationψ if for all

environment inputs, it prescribes outputs that result in computa-

tions which satisfyψ . We say thatψ is realizable if such a controller

exists. Otherwise,ψ is unrealizable. It is well-known that finite con-

trollers are sufficient for realizability of LTL specifications [33]. The

goal of LTL synthesis is, given an LTL specification, to construct a

controller that realizes it, if it is realizable.

2.2 GR(1) Realizability Problem

GR(1) synthesis [5, 31] handles a fragment of LTL where speci-

fications have a predefined syntactic structure. Specifically, they

contain initial assumptions and guarantees over initial states (de-

noted θe and θs resp.), safety assumptions and guarantees relating
the current and next state (denoted ρe and ρs resp.), and justice
assumptions and guarantees requiring that an assertion holds infin-

itely many times during a computation (denoted Je and J s resp.).

GR(1) synthesis has the following notion of realizability1 defined

by the LTL formula

(θe ∧ Gρe ∧
∧

i ∈1..m

GFJei ) → (θs ∧ Gρs ∧
∧

j ∈1..n

GFJ sj )

The GR(1) realizability problem is formulated as a two-player

game between the system and the environment, and reduces to

deciding the winner in such game. Intuitively, the system wins if

it has a strategy that allows it to satisfy its n justice guarantees
infinitely often while maintaining initial and safety guarantees, or

force the environment to violate any of itsm justice assumptions,

or its initial or safety assumptions.

We denote the states from which the system can force the envi-

ronment to visit a state in X by (X ), also called the controlled
predecessors, defined as:

(X ) = {c ∈ 2X∪Y | ∀x ∈ 2X : ¬ρe (c, x) ∨ ∃y ∈ 2Y :

(ρs (c, 〈x,y〉) ∧ 〈x,y〉 ∈ X )}
(1)

The winning states are characterized using the following three-

level nested μ-calculus formula from [5]:

Wsys = νZ .
n⋂
j=1

μY .
m⋃
i=1

νX .(J sj ∩ (Z ))∪ (Y )∪(¬Jei ∩ (X )) (2)

The output of formula 2 is the set of winning states for the system

player.

2.3 GR(1) Original Controller Construction

The realizability checking algorithm outputs additional intermedi-

ate results of the nested fixed-point computations from Eq. 2, stored

in mX[][][] and mY[][]. These intermediate results, along with the
winning setWsys , are presented as follows. We use 1-based indexes

for the justice assumptions and guarantees to conform with the

notation in [5].

2.3.1 . mX[j][r ][i] represents the set of states in which the system
is at most r steps from the satisfaction of J sj (the system is at rank

r ), and from any state in this set, the system can either keep forcing

the environment to violate Jei , or alternatively move one step closer
towards satisfying J sj . It is the result of the safety game innermost

greatest fixed-point computation from formula 2.

Specifically, when r = 1, mX[j][1][i] represents the set of states
in which the system either satisfies J sj , or forces the environment

to violate Jei .

2.3.2 . mY[j][r ] represents the set of states in which the system is

at most r steps from the satisfaction of J sj . From any state in this

set, the system can either force the environment to violate at least

one Jei for some i , or move one step closer towards satisfying J sj .

mY[j][r ] is defined as follows:

mY[j][r ] =
⋃

i ∈[1..m]

mX[j][r ][i] (3)

1There exists a strict, more involved variant of realizability [5]. However, the difference
is not relevant for the paper.

636



It is an intermediate result of the inner reachability game least

fixed-point computation from formula 2. We denote by r j the num-
ber of iterations during this computation. It holds that:

∀j, r < r j .
(
mY[j][r ] ⊆ mY[j][r + 1]

)
(4)

Specifically, mY[j][r j ] is the result of the reachability game inner
least fixed-point computation. From this set, the system can even-

tually satisfy J sj , or force the environment to violate some justice

assumption.

2.3.3 . Finally,Wsys , denoted Z from now on, represents the set of

states in which the system can act towards satisfying all its justice

guarantees in a round-robin fashion, or can force the environment

to violate any of its assumptions. It is the winning set of the GR(1)

game and the result of the safety game outermost greatest fixed-

point computation. During the iterations of this computation, the

inner reachability games are adjusted each time to stop within the

boundaries of Z, hence finally:

∀j .Z = mY[j][r j ] (5)

From these intermediate results, Bloem et al. [5] show how to

construct a controller implementing awinning strategy as described

in Alg. 1. We briefly present the algorithm.

LetZn denote the variable representing the index of the current

justice goal. Primed BDDs, e.g., X ′, denote the set of states X , but
where variables refer to their next value. Denote ρ as ρe ∧ ρs . ρ,
as the BDD responsible for the transitions safety, contains both

primed and unprimed variables. Denote ⊕ as the addition operation

modulo n.
The construction is divided into three parts. Each part conjuncts

valid transitions to the controller, i.e., relations between current

and next states:

• Given j ∈ [1 . . .n], a ρ1 transition (lines 2-6) is taken from Z
states, where current state satisfies justice guarantee J sj . In this

case,Zn is updated with j ⊕ 1 and next states are in Z.
• Given j ∈ [1 . . .n] and r ∈ [2 . . . r j ], a ρ2 transition (lines 7-15)
is taken from mY[j][r ] states, where rank r is minimal, namely,
current state is in mY[j][r ] but not in

⋃
r ′<r mY[j][r

′]. In this case,

controller proceeds to mY[j][r − 1].
• Given j ∈ [1 . . .n], r ∈ [1 . . . r j ], and i ∈ [1 . . .m], a ρ3 transition
(lines 16-26) is taken from mX[j][r ][i] states, where current state
violates Jei , and r and i are minimal, namely, current state is in
mX[j][r ][i] but not in

⋃
r ′,i′ mX[j][r

′][i ′] for r ′ < r or r ′ = r and
i ′ < i . In this case, the controller remains in mX[j][r ][i].

The output of Alg. 1 is a single BDD over variables X ∪Y and

Zn that describes a reactive controller, i.e., a finite Mealy machine.

Since this representation uses a pre-computed BDD, we refer to it

here as the static approach, to differentiate from our just-in-time

approach.

Bloem et al. [5] show that this construction is sound and com-

plete, i.e., that all next states returned are winning for the system

and that if there is a winning next state, at least one is returned.

Algorithm 1 Controller construction for the static approach

input: Z, mY[][], mX[][][]
1: trans ← TRUE
2: for all j ∈ [1 . . .n] do // ρ1 transitions
3: transj ← (Zn = j) ∧ Z ∧ J sj ∧ ρ

4: transj ← transj ∧ Z′ ∧ (Z′
n = j ⊕ 1)

5: trans ← trans ∨ transj
6: end for

7: for all j ∈ [1 . . .n] do // ρ2 transitions
8: low ← mY[j][0]
9: for all r ∈ [2 . . . r j ] do
10: transjr ← (Zn = j) ∧ mY[j][r ] ∧ ¬low ∧ ρ
11: transjr ← transjr ∧ low

′ ∧ (Z′
n = j)

12: trans ← trans ∨ transjr
13: low ← low ∨ mY[j][r ]
14: end for

15: end for

16: for all j ∈ [1 . . .n] do // ρ3 transitions
17: low ← mY[j][0]
18: for all r ∈ [1 . . . r j ] do
19: for all i ∈ [1 . . .m] do
20: transjr i ← (Zn = j) ∧ mX[j][r ][i] ∧¬low ∧¬Jei ∧ ρ
21: transjr i ← transjr i ∧ mX′[j][r ][i] ∧ (Z′

n = j)
22: trans ← trans ∨ transjr i
23: low ← low ∨ mX[j][r ][i]
24: end for

25: end for

26: end for

27: return trans

2.4 GR(1) Original Controller Execution

Before system execution, this BDD, denoted trans , is loaded, and is
used during execution to compute next possible assignments to all

system variables, as we show in Alg. 2. One step of the execution

consists of the environment choosing values for the next input, after

which the system must choose values for the next state (output)

from the result set of Alg. 2.

In Alg. 2, c ∈ 2X∪Y is a BDD describing the current state of the

variables. x ∈ 2X is a BDD describing environment inputs. j is the
index of the current justice goal. The execution itself is straight-

forward. It conjuncts trans with current state c , inputs x primed,
and the assignment Zn = j. Observe that the resulting BDD T
represents a subset of transitions encoded in trans that conform
to the given inputs. The controller extracts the next states from T
by quantifying out unprimed variables and unpriming the result

(intuitively, it means moving to the next step in the game).

From the output of Alg. 2, the controller picks one assignment

to variables over Y ∪ {Zn }, which is regarded as the next state.

This assignment can be chosen at random, or by applying some

deterministic rule.

We assume that environment inputs are checked for correctness

prior to the call to Alg. 2, namely, they do not violate the safety

assumptions. In case of an invalid input the controller may raise an

error message.
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Algorithm 2 Controller next states for the static approach

input: c ∈ 2X∪Y , x ∈ 2X , j ∈ [1 . . .n]
1: T ← (Zn = j) ∧ c ∧ x

′ ∧ trans // where trans is from Alg. 1

2: T ← Quanti f yOutUnprimedVars(T )
3: T ← Unprime(T )
4: return T

3 JUST-IN-TIME SYNTHESIS

We are now ready to present the main contribution. The JITS solu-

tion is divided into two separate phases: storing and execution. We

use set theoretic and logic notation interchangeably when describ-

ing operations on BDDs (as representations of sets and as Boolean

functions, respectively).

3.1 Storing

Given the intermediate results computed by the realizability check-

ing algorithm, we make the following key observations.

3.1.1 . mY[][] and Z are derived from the array of mX[][][] fixed-
points, as seen in Equ. 3 and Equ. 5. Thus, even though they are

crucial for correct execution, storing them for later use is redundant.

3.1.2 . The mX[][][] array holds many BDDs, each of which de-

scribes a set of states. While there are
∑
j ∈[1...n]m · r j such BDDs

in total, we expect them to be similar to one another because they

represent monotonic sequences of sets, i.e., ordered by subset rela-

tion. Formally:

∀j, r < r j , i .
(
mX[j][r ][i] ⊆ mX[j][r + 1][i]

)
(6)

Equation 6 holds following Equ. 3 and Equ. 4. One may hope to

take advantage of this similarity when storing them.

3.1.3 . When encodingmultiple BDDs to a file on disk, thememory

optimization achieved by sharing nodes in the internal BDD engine

between these BDDs is lost if they are encoded separately.

Based on these three observations, JITS encodes the required data

in a single BDD over three new variables J , R, I , and the variables
X ∪Y as follows:

Xs =
∧
j ,r ,i

(
(J = j ∧ R = r ∧ I = i) → mX[j][r ][i]

)
(7)

At the end of the construction phase, JITS stores the BDD Xs
along with the BDDs representing the justice assumptions Jei , jus-
tice guarantees J sj , initial and safety formulas θ

s , θe , ρs and ρe

from the original specification. As our evaluation shows, see Sect. 5,

this representation is highly efficient.

Together, as we explain next, the stored BDDs provide all the

necessary information for correct execution.

3.2 Execution

3.2.1 Loading. System execution starts by loading the BDDs stored

at the end of the storing phase. As part of loading, JITS extracts ev-

ery mX[j][r ][i] to an array by restricting theXs BDD to every unique

assignment of the J , R, and I variables, and computes mY[][] array

according to definition from Equ. 3. JITS also omits Z calculation
since it holds that Z = mY[1][r1] from Equ. 5.

JITS loads the initial and safety BDDs, and sets ρ = ρs ∧ ρe . ρ as
well as all primed versions of mX[][][] and mY[][] BDDs are computed
at load time and cached for later use. Note that the variable Zn

is absent from the BDD state space of JITS. As we show in our

evaluation, JITS loading time is typically shorter than that of the

static approach (and the longer the loading time with the static

approach, the shorter JITS loading time becomes in comparison,

reaching order of magnitudes relative improvement).

3.2.2 Step-wise execution. At the end of loading, JITS is ready for

step-wise execution as we show in Alg. 3. This step-wise execu-

tion algorithm acts as an eager, just-in-time implementation of

Alg. 1 static construction and Alg. 2 execution. As in the static

approach, we assume correct environment inputs, and in case of

an invalid input (which violates safety assumptions), can raise an

error message.

During runtime, JITS maintains, on the algorithm level, a helper

index rmin that keeps the current rank (distance from J sj ). JITS

maintains this index, such that after initialization and at the end of

each step it points to the lowest rank possible.

The algorithm first checks if the current state c satisfies J sj . Ac-

cording to the ρ1 transitions from the static construction, next

states should be the whole Z set. JITS instead, performs an eager
look-ahead to find the lowest rank for next justice goal given envi-

ronment inputs x , and updates rmin . The BDD N , which represents
the next states, is assigned with mY[j ⊕ 1][rmin ]. (lines 3-4).

Otherwise, JITS tries to decrease rank. According to the ρ2 tran-
sitions from the static construction, next states is the mY[j][rmin−1]

set. As before, JITS performs an eager look-ahead to find the next

lowest rank possible for the current goal. It updates rmin and as-

signs N to mY[j][rmin ] (lines 9-10).

Note that it is not always possible to decrease rank from c with
inputs x , since for every j and r , mY[j][r ] contains not only the

controlled predecessors of mY[j][r − 1], but also the results of m
safety games for this rank that force justice assumption violation.

Another possibility is that rmin is currently 1, yet justice goal is

not satisfied. In these cases, JITS resorts to force the environment

to violate some Jei . It computes the minimal imin for that purpose

and assigns N to mX[j][rmin ][imin ] (lines 12-13).

The final part is similar to Alg. 2. JITS conjuncts N in its primed

state with c ∧ x ′ ∧ ρ. Then it processes the result by quantifying
out unprimed variables and unpriming, and finally returns a BDD

that represents a set of possible next assignments over Y. Observe

that at this stage, the next justice goal j is already decided. As in
the static approach, a single assignment can be chosen at random

or deterministically.

Remark 1 (Eagerness). A property of JITS that one might con-

sider eager, is that it first and foremost considers transitions that make

progress towards satisfying the current justice guarantee, and resorts

to justice assumption violation only if conditions are not met. The

original construction from [5], on the other hand, always considers

ρ3 transitions from any step, since they were already added to trans
BDD regardless.
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Algorithm 3 Controller next states for JITS

input: c ∈ 2X∪Y , x ∈ 2X , j ∈ [1 . . .n]
1: if c ∈ J sj then // corresponds to ρ1 from Alg. 1

2: j ′ ← j ⊕ 1

3: rmin ← min{r ∈ [1 . . . r j′ ] | c ∧ x
′ ∧ ρ ∧ mY′[j ′][r ] � ∅}

4: N ← mY[j ′][rmin ]

5: else

6: j ′ ← j
7: rnew ← min{r ∈ [1 . . . rmin ] | c ∧ x

′ ∧ ρ ∧ mY′[j ′][r ] � ∅}
8: if rnew < rmin then // corresponds to ρ2 from Alg. 1

9: rmin ← rnew
10: N ← mY[j ′][rmin ]

11: else // corresponds to ρ3 from Alg. 1

12: imin ← min{i ∈ [1 . . .m] | c ∈ mX[j ′][rmin ][i]}
13: N ← mX[j ′][rmin ][imin ]

14: end if

15: end if

16: T ← c ∧ x ′ ∧ ρ ∧ N ′

17: T ← Quanti f yOutUnprimedVars(T )
18: T ← Unprime(T )
19: return T

Specifically, this creates a redundancy that the static construction

suffers from, and of which JITS is devoid. When the current state

satisfies J sj , Alg. 1 outputs as next states both Z (with Zn = j ⊕ 1)

and mX[j][1][i] for some i ∈ [1 . . .m] (with Zn = j), since both ρ1
and ρ3 transitions are available. This may result in pairs of states
that agree on all variable values in X ∪Y and disagree on the value

ofZn . Bloem et al. [5] attempt to tackle this case and minimize the

transition system, but at the cost of a much larger BDD according to

their evaluation. In JITS, due to the inherent eagerness, this problem

does not exist.

3.3 Soundness and Deadlock-Freedom

JITS next states algorithm (Alg. 3) is sound w.r.t. the original static

approach, i.e., it does not return a state that the original static

approach would not have produced. Moreover, JITS is deadlock-free

w.r.t. the static approach, in the following sense: it always returns

a correct set of next states, if at least one such state exists. The

remainder of this subsection formalizes and proves these claims.

3.3.1 Formalization. We bridge the gap between the output format

of Alg. 2, where (multiple) possible assignments of Zn are part

of the result BDD T , and Alg. 3, where the next justice goal is

deterministic and maintained outside the BDD state space.

We use the tuple (s,k), where s ∈ 2Y andk ∈ [1 . . .n], to describe
an assignment s to system variables over Y along with a justice

goal index k . We describe the BDD outputs of the static approach

and JITS next state functions as a set of such tuples.

Given c ∈ 2X∪Y , x ∈ 2X , and j ∈ [1 . . .n], we denote NSstatic
as the output of Alg. 2 and NS J IT S as the output of Alg. 3, in the
form of a set of tuples (s,k). Let j ′ be the value of the justice goal
index by the end of Alg. 3 for inputs c , x , and j. Observe that for
every tuple (s,k) ∈ NS J IT S , k has the same value, which is j

′, while

for every tuple (s,k) ∈ NSstatic , k can be either j or j⊕1 (according
toZn ).

We proceed to state the theorems. We assume correct environ-

ment behavior, i.e., environment inputs that do not violate the

environment assumptions. Soundness and deadlock-freedom for

the case of an environment assumption violation are trivial.

Theorem 1 (JITS is sound). For every c ∈ 2X∪Y , x ∈ 2X , and
j ∈ [1 . . .n]:

NS J IT S ⊆ NSstatic

Note the use of ⊆ in Thm. 1. Equality happens when a ρ3 transi-
tion is the only transition possible according to Alg. 1. In this case,

both JITS and the static approach keep the justice guarantee goal

index intact and return next states in mX[j][r ][i] for same values of r
and i . In all other cases, the relation between NS J IT S and NSstatic
is a strict inclusion. In these cases, ρ2 or ρ1 transitions are possible
as well. While JITS will ignore any ρ3 transitions then, the static
approach will consider all possible transitions.

Theorem 2 (JITS is deadlock-free). For every c ∈ 2X∪Y , x ∈

2X , and j ∈ [1 . . .n]:

NSstatic � ∅ =⇒ NS J IT S � ∅

3.3.2 Proofs. Denote the set of the intermediate results of the

fixed-point computations BDDs as FP :

FP = {Z} ∪
⋃
j ,r

{mY[j][r ]} ∪
⋃
j ,r ,i

{mX[j][r ][i]}

Observe that trans BDD is a disjunction of transitions, each of

which is a BDD of the following form:

ZN ∧A ∧ ρ ∧ B′ ∧ ZN ′

A ∈ FP represents a current set of states, B′ ∈ FP ′ represents
a primed next set of states, ZN represents an assignment to Zn ,

and ZN ′ represents a next assignment toZn . Therefore, line 1 in

Alg. 2 can be rewritten as:

T ← (Zn = j) ∧ c ∧ x
′ ∧

( ∨

all transit ions

ZN ∧A ∧ ρ ∧ B′ ∧ ZN ′
)

Alg. 2 extracts the next states from T by targeting only primed

variables. Hence, we define NSstatic as follows:

NSstatic = {(s |Y, s |Zn
) | s ∈ x ∧ ρ ∧

( ∨

all transit ions

B ∧ ZN
)
}

Observe that ZN ’s support is the single variableZn . We may re-

strictZn value to some k , and define NSstatic (k):

NSstatic (k) = {(s |Y,k) | s ∈ x ∧ ρ ∧
( ∨

Zn=k

B
)
}

Naturally, NSstatic (k) ⊆ NSstatic .
Similarly, JITS extracts the next states from T , which was com-

puted in line 16 in Alg. 3. We define NS J IT S as follows:

NS J IT S = {(s, j
′) | s ∈ x ∧ ρ ∧ N }

N ∈ FP/{Z} is the BDD of next states. j ′ is the justice goal index
at the end of Alg. 3 for the given inputs.
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Proof of Thm. 1: JITS is sound. It is enough to show that

NS J IT S ⊆ NSstatic (j
′). Considering that x and ρ BDDs appear

on both sides, it is enough to show that N ⊆
⋃
Zn=j′ B.

We consider three cases, based on the assignment to N in Alg. 3:

• N is the result of current state c satisfying J sj (lines 3-4). In this

case, j ′ = j ⊕ 1 and N = mY[j ⊕ 1][rmin ].

There is a corresponding ρ1 transition with B = Z that also

updates Zn to j ⊕ 1. From Equ. 4 and Equ. 5 we know that

mY[j ⊕ 1][rmin ] ⊆ mY[j ⊕ 1][r j ] = Z.
• N is the result of the system progressing at least one step towards

satisfying its justice goal (lines 9-10). In this case, j ′ = j and
N = mY[j][rmin ] for the lowest computed rmin .

Since previous r was minimal such that c ∈ mY[j][r ], there is a
corresponding ρ2 transition with B = mY[j][r − 1] that retains

Zn value. From the fact that rmin ≤ r − 1 and from Equ. 4 we

know that mY[j][rmin ] ⊆ mY[j][r − 1].
• N is the result of the system staying at the same distance from

the justice goal and instead forcing the environment to violate

Jei for the minimal i (lines 12-13). In this case, j ′ = j and N =
mX[j][rmin ][imin ].

Since i is minimal such that c ∈ mX[j][rmin ][i] there is a corre-
sponding ρ3 transition with B = mX[j][rmin ][imin ] that retains

Zn value.

�

Proof of Thm. 2: JITS is deadlock-free. First we show that

NSstatic � ∅ =⇒ NSstatic (j
′) � ∅. Consider two cases:

• There is a state (s, j ⊕ 1) ∈ NSstatic that is a result of a ρ1
transition, which also updatesZn to j ⊕ 1. Hence, current state

satisfies J sj and so j
′ = j ⊕ 1 in JITS. Therefore this state is also

in NSstatic (j
′).

• All states (s, j) ∈ NSstatic are the result of ρ2 or ρ3 transitions,
which keep Zn intact. Hence j ′ = j in JITS as well, and same
states are in NSstatic (j

′).

We complete the proof by showing that NSstatic (j
′) � ∅ =⇒

NS J IT S � ∅. Similarly to Thm. 1, we cancel out x and ρ and show
that

⋃
Zn=j′ B � ∅ implies N � ∅.

We consider two cases:

• There is a B ∈ FP in
⋃
Zn=j′ B that is a result of a ρ1 or ρ2

transition. In Alg. 3, either current state satisfies the current

justice goal (lines 3-4) or it is possible to decrease r at least by
one (lines 9-10). In any case, N is assigned with one of the mY[][]
BDDs.

• All B ∈ FP in
⋃
Zn=j′ B are the result of ρ3 transitions. In this

case, the controller cannot progress towards satisfying current

justice goal. Alg. 3 doesn’t change j and r indexes, and assigns
N with one of the mX[][][] BDDs (lines 12-13).

�

4 EXTENSIONS

Thanks to the decoupling of synthesis from system execution, JITS

opens theway for synthesis independent extensions that can change

system behavior at runtime, without the need to re-synthesize the

specification. These extensions can be implemented as variants of

the controller loading procedures and of Alg. 3. The extensions

ought to be independent of each other, and ideally one should be

able to combine multiple extensions during execution. We present

three such example extensions.

4.1 Justice Guarantees Bookkeeping

Schlaipfer et al. [34] suggested “bookkeeping” as a method to satisfy

each justice guarantee as quickly as possible. This is achieved via

a Boolean array that keeps track of the guarantees satisfied in the

current round and a master bit. On each step, the bookkeeping

code checks whether any guarantee other than the current goal

is satisfied, and marks the relevant index in the Boolean array

according to themaster bit.When the current justice goal is satisfied

and the system chooses its next goal, it uses the array to retrieve

the smallest index not yet marked. Once all indexes in the array

are marked, it flips the master bit and starts a new round, with the

“bookkeeping” array and the master bit having inverted values.

We have added optional bookkeeping feature as an extension

to the basic JITS, with a slightly improved algorithm. Our method

tracks unsatisfied guarantees both backwards and forwards, i.e., it

does not wait until a full round of justice guarantees is completed

before it checks on a specific guarantee, but does so on every step.

The bookkeeping extension changes the basic JITS in two loca-

tions. First, we add “bookkeeping" array management code before

the call to JITS next states computation (Alg. 4). This code iterates

over all justice guarantees: for each J s
k
that is satisfied by the cur-

rent state, the code marks the corresponding index k in the bk array
according to themaster bit. Guarantees whose index is smaller than
JITS’ current goal are marked with the opposite value ofmaster .
This way, our method begins to track a new round even before the

system has satisfied all the remaining guarantees on the list.

Second, we replaced line 2 in Alg. 3 with the code in Alg. 5,

which returns the next justice goal according to bk ,master , and
the current goal j. The method iterates over the justice guarantees
starting from the (j +1)-th place and finds the smallest index whose
justice guarantee has not yet been satisfied. Once it reaches the end

of the array, it flips themaster to indicate that a round of justice
guarantees has been completed, and then continues to iterate from

0 to j.
Note that in case all indexes in the bk array are marked, the

algorithm simply returns to j. Specifically, this means that while
working its way to J sj , the system has already satisfied all its other

justice guarantees.

4.2 Recovery

Wong et al. [38] suggested controller implementations that attempt

to recover in case of environment safety assumption violation. This

is achieved by altering the original, static controller construction

phase: removing the check whether a transition with a given en-

vironment input satisfies ρe and is therefore allowed, and instead
considering all next input possibilities. Then, the construction still

attempts to find transitions that ensure that the next state can keep

satisfying the winning conditions, although such a next state may

not exist.

We have added optional recovery feature as an extension to the

basic JITS. Recall that we assumed correct environment behavior in

the previous sections. In this extension, we revisit this assumption
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Algorithm 4 Controller next states for JITS with bookkeeping

input: c ∈ 2X∪Y , x ∈ 2X , j ∈ 1 . . .n
1: for all k ∈ [j . . .n] do
2: if bk[k] ==master and c ∈ J s

k
then

3: bk[k] ← ¬master
4: end if

5: end for

6: for all k ∈ [1 . . . j − 1] do
7: if bk[k] == ¬master and c ∈ J s

k
then

8: bk[k] ←master
9: end if

10: end for

11: return next states(c, x, j) // Call Alg. 3

Algorithm 5 Next justice goal for JITS with bookkeeping

input: j ∈ [1 . . .n]
1: for all k ∈ [j + 1 . . .n] do
2: if bk[k] ==master then
3: return k
4: end if

5: end for

6: master ← ¬master
7: for all k ∈ [1 . . . j − 1] do
8: if bk[k] ==master then
9: return k
10: end if

11: end for

12: return j

and do expect inputs that may violate environment safeties ρe
during runtime; instead of returning an error, we proceed with the

JITS next states algorithm and attempt to find a valid next state.

Recall that JITS always returns next states that are contained in

Z, which is the winning states set. Still, as in the static controller
recovery in [38], it may be the case that due to the environment

safety violation, no such possible next state exists, and thus no such

next state will be returned. Only in this case, the JITS recovery

extension returns an error, same as in the basic JITS variant.

4.3 Configurable Set of Justice Guarantees

Configurability is a known extra functional requirement. Given a

family of closely related products, rather than developing a separate

software for each, one is encouraged to design and develop a single

product that can be customized to a specific subset of the complete

requirements at deployment time. Configurability is related to the

idea andmethodology of software product lines. To apply configura-

bility to our domain of synthesized reactive systems, a configurable

controller may be one that supports a set of justice guarantees that

is chosen from a larger superset of justice guarantees.

In the static approach, in order to achieve such configurability, a

unique controller must be synthesized for each relevant subset of

the justice guarantees, or alternatively, a unique flag variable must

be maintained inside the specification to represent the relevance

of each justice guarantee, adding to the overall state space and

complexity of the specification.

In JITS however, this kind of configurability can be achieved at

execution time, via an extension that receives at load time a set

of required justice guarantee indexes as an argument. During the

extraction phase, JITS skips those indexes that are not in the set,

thus loading only the BDDs relevant to the remaining indexes. This

solution does not affect synthesis time. It only requires that the

complete specification, containing all the guarantees, is realizable.

Naturally, when the complete specification is realizable, any variant

with only a subset of the justice guarantees is realizable as well.

Moreover, any variant will be available at deployment time, since it

depends only on the required justice guarantees indexes argument.

We have implemented this functionality of configurable set of

justice guarantees as an optional extension to the basic JITS. The

extension receives a set of required justice guarantee indexes as an

argument and loads only the BDDs relevant to these indexes. Note

that an execution based on the original basic JITS is still correct, as

the required set of justice guarantees is a subset of the complete

superset. However, one may expect that given a strict subset of

justice guarantees indexes, the extension typically loads faster and

takes less memory than the original basic JITS.

5 IMPLEMENTATION AND EVALUATION

We have implemented JITS in the open source Spectra [2, 25], which

already includes a GR(1) synthesizer and implementations of several

additional analyses. Our implementation in Java uses BDDs [6]

via the CUDD 3.0 [36] package. Realizability checking includes

heuristics described in [15].

All specifications used in our evaluation, the raw data we col-

lected, and the code to reproduce our experiments, are available in

supporting materials [1].

We consider the following research questions.

RQ0 How does static controller construction time compare with

realizability checking time?

RQ1 How does JITS compare with existing approaches during

synthesis, w.r.t. time, memory usage, and size of its output

representation?

RQ2 How does JITS compare with existing approaches during

system execution, w.r.t. load time, memory usage, and step

time?

Below we report on the experiments we have conducted in order

to answer the above questions.

5.1 Corpus of Specifications

We evaluate JITS using two sets of benchmark specifications from

the literature.

First, ARM’s AMBA AHB arbiter (AMBA) and IBM’s generalized

buffer (GenBuf). These two specifications have been extensively

used in the GR(1) literature for evaluation purposes, e.g., in [8,

15, 18, 20, 29, 34]. They are valuable as they are parametric and

therefore suitable for examining scalability.

Second, specifications from the SYNTECH benchmarks [15],

available from the Spectra website. These specifications were writ-

ten by 3rd year CS undergrads in class projects taught by the authors

of [15]. The benchmarks have been used in some works [9, 26, 30].
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They include several versions of each specification submitted by

the students. We use here the largest specifications, i.e., all specifi-

cations where the total number of variables is greater than 40. For

each, we use the final specification the students submitted. In total,

we use 5 specifications from the SYNTECH benchmarks.

5.2 Validation

We have systematically and automatically validated the correct-

ness of our implementation by creating a test that runs the static

approach controller and the JITS step by step in parallel, against

the same environment behaviors, and in every step, checks that the

choice of next state by the latter is included in the possible next

states suggested by the former. We executed this test over all the

specifications in our corpus, against a random environment, for

runs of 10,000 steps. This validation increases our confidence in the

correctness of our ideas and their implementation.

5.3 Experiment Setups

We used two separate experiment setups, one to examine synthesis

(RQ0, RQ1), the other to examine system execution (RQ2).

5.3.1 Synthesis setup. For the synthesis setup, we compared JITS

against two existing tools: Slugs [13] and Spectra [25]. We used the

latest versions of Slugs and Spectra from GitHub and only added

minimal code to measure time and memory. Both tools use (variants

of) the original approach from [5]. Spectra realizability checking

includes all heuristics described in [15]. We chose to compare Spec-

tra against Slugs, and not against other GR(1) synthesizers, e.g.,

RATSY [4], as according to results in [15], the larger the specifica-

tion, the faster Slugs realizability checking time compared to that of

RATSY. Moreover, Slugs is a more recent tool; the version of Slugs

that we used is the latest available, from June 2018.

We measured synthesis time, memory used, and size of output

as follows. Synthesis time is the time of realizability checking com-

bined with controller construction or storing time. Memory used is

the number of active BDD nodes as reported by CUDD. Note that

memory usage is as an important metric, as indeed some specifica-

tions could not be synthesized/executed successfully by the static

approach due to an out-of-memory error. The size of the output is

the size of the output on disk.

We used a fixed timeout of two hours. We mark timeouts by

-. In some cases Slugs resulted in an out-of-memory error during
synthesis. We mark these cases by xx. When synthesis failed due

to any of these cases, we mark the other measures as n/a. All
values we report are median values of 10 runs per specification per

tool. Times we report are measured by Java in milliseconds. Even

though the algorithms we deal with are deterministic, we repeated

each experiment 10 times since JVM garbage collection and CUDD

garbage collection add variance to running times.

For the specifications available for Slugs, AMBA and GenBuf,

we took the equivalent Spectra specifications available from [15],

and used them in the comparison between the three tools. For the

specifications from the SYNTECH benchmarks, which are richer

(e.g., include patterns) and therefore not available for Slugs, we

compared only between Spectra and JITS.

In this setup, we run all experiments on an ordinary PC, Intel

Xeon W-2133 CPU 3.6GHz, 32GB RAM with Windows 10 64-bit OS,

Table 1: Comparison of construction vs. realizability running times
for Slugs and Spectra

Specification

Synthesis Time (sec)

Slugs Spectra

Real. Constr. Real. Constr.

AMBA1 0.20 0.02 0.20 0.17

AMBA2 3.32 0.25 1.52 1.63

AMBA3 44.18 2.94 21.18 130.33

AMBA4 2086.30 30.17 132.50 1030.89

AMBA5 – n/a 149.19 –

AMBA10 – n/a 2753.65 –

GenBuf5 1.50 0.65 0.18 0.27

GenBuf10 0.58 15.18 0.30 0.75

GenBuf20 1.46 xx 1.53 6.42

GenBuf30 3.88 xx 3.99 25.90

GenBuf40 16.09 xx 8.84 73.18

GenBuf90 331.15 xx 91.23 1486.84

AirportShuttle 48.04 7.79

Junction2 0.83 13.20

Junction3 9.21 1157.32

RoboticArm 3.97 12.33

SimpleVehicle 2.90 8.39

Java 8 64Bit, and CUDD 3 compiled for 64Bit, using only a single

core of the CPU.

5.3.2 System execution setup. For the system execution setup, we

compared JITS with and without the bookkeeping extension against

Spectra. We could not compare againt Slugs because, to the best

of our knowledge, it does not provide a direct controller execution

API. We measured load time, memory used, and step time. We load

the controller and execute it for 10,000 steps against a random

environment.

Load time includes loading the BDDs, caching as described in

Sect. 3.2, and the initial step. Memory used is the number of active

BDD nodes as reported by CUDD library at the end of the execution.

Step time is the time to compute the next step. We use average step

time over the 10,000 steps. Times we report are median values of 10

runs (of 10,000 steps each), per specification per tool, measured by

Java in milliseconds. Again, we repeated each experiment 10 times

to accommodate for the variance in running times.

In some cases Spectra resulted in an out-of-memory error during

load. We mark these cases by xx, and consequently we mark the
other measures for the same specification by n/a.

In this setup, we run all experiments on a Raspberry Pi 2 Model

B with 900MHz quad-core ARM Cortex-A7 CPU, 1GB of RAM

with Raspbian 8 32-bit OS, Java 8 32Bit, and CUDD 3 compiled for

32Bit, using only a single core of the CPU. We chose this rather

weak computer (different and much weaker than the computer on

which we run synthesis), as an example of a target platform for a

synthesized controller, e.g., a robot.

5.4 Results: Realizability vs. Construction

Table 1 presents a comparison between realizability and controller

construction times, in seconds, for Spectra and Slugs.
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The results show that in both tools, for most of the specifications,

construction takes considerably more time than realizability (except

for the AMBA specifications for Slugs, and AirportShuttle). For

AMBA5 and up, Slugs could not complete realizability checking

and Spectra could not complete construction within the 2 hours

timeout. For GenBuf20 and up, Slugs construction resulted in an

out-of-memory error. In the extreme case of Junction3, more than

99% of the total synthesis time was spent on controller construction.

To answer RQ0:We have evidence showing that in both tools and

for most of the specifications, construction takes significantly

more time than realizability checking. This evidence is consis-

tent with data reported on in [5]. These results strengthen the

motivation for JITS, which skips controller construction.

5.5 Results: Synthesis

Table 2 presents the results for synthesis. For each of the three tools,

we show construction / storing time in seconds, number of active

nodes in thousands, and space on disk in Mb. Note that JITS uses

Spectra realizability checking but replaces Spectra construction

with storing.

AMBA and GenBuf. In terms of construction time, the results

show that while Slugs and Spectra grow very fast with the size

of the specification (number of masters, number of senders), JITS

storing time grows, but much slower. In absolute terms, in all but

one specification (the smallest, AMBA1), JITS performs better than

both other tools, sometime more than an order of magnitude better.

In general, the larger the specification, the better the performance

of JITS relative to the two other tools.

Similarily, in terms of active nodes and space on disk, the results

show that while Slugs and Spectra grow very fast with the size of

the specification, JITS growth is much slower.

SYNTECH. The table further presents the results on specifications

from the SYNTECH benchmarks. This part of the table does not

include data for Slugs as these specifications are rich; they include

patterns, monitors, etc., which are not supported by Slugs.

In terms of construction time, Spectra is in all cases higher than

JITS storing time. As expected, storing is much faster than construc-

tion.

In terms of active nodes and space on disk, the results show that

JITS requires less memory and its output’s size on disk is smaller,

in most cases, by a factor of 3 or more.

To answer RQ1: JITS outperforms existing approaches w.r.t. con-

struction time, memory usage, and output size, sometimes by

orders of magnitude. Moreover, JITS scales better than the other

two tools. The larger the specification, the better JITS synthesis

time, memory usage, and size on disk compared to the other two

tools.

5.6 Results: System Execution

Table 3 presents the results for system execution. For each of the

two tools, we show load time in seconds, number of active nodes by

the end of the execution in thousands, and step time in milliseconds.

For the number of active nodes and step time we show results also

for JITS with bookkeeping. We do not report load time for JITS

with bookkeeping since this extension is independent of this part.

AMBA and GenBuf. In terms of load time, the results show that

while Spectra load time grows very fast with the size of the spec-

ification (number of masters, number of senders), JITS load time

grows very slowly. In absolute terms, JITS load time is always faster

than that of Spectra.

In terms of active nodes and single step time, the results show

obvious advantage to JITS (with or without bookkeeping) as the

specifications grow larger.

SYNTECH. The table further presents the results on specifications

from the SYNTECH benchmarks. In terms of load time, active nodes,

and single step time, the results do not show a clear advantage to

one of the approaches over the other. In particular, in terms of single

step time, we do not observe that one approach is consistently better

than the other.

We consider these results, for all specifications, to be a good point

for JITS, as, apriori, one may expect that given the computations

it has to do in every step, we would observe much slower step

times for JITS than for Spectra. However, recall that the static trans
BDD, which holds all the transitions, can be very large. Loading and

applying logical operations on large BDDs can be costly, and vary

greatly based on variable ordering. In contrast, while typically JITS

has a higher number of operations per step, the BDDs it manipulates

are much smaller.

To answer RQ2: JITS does not compromise system execution

performance, and in some cases achieves even better results than

existing approaches w.r.t. load time, memory usage, and step

time. We also see that in many cases, JITS scales better than

Spectra. The larger the specification, the better JITS load time,

memory usage, and step time compared to Spectra.

5.7 Threats to Validity

We briefly discuss threats to the validity of our results.

First, the symbolic computations are not trivial and our imple-

mentation may have bugs. To mitigate this, we performed a thor-

ough validation using all specifications available to us, see Sect. 5.2.

Second, even though the algorithms we deal with are determin-

istic, garbage collection of the JVM and of CUDD add variance to

running times. To mitigate this, we repeated each experiment 10

times and we report median values. CUDD dynamic reordering may

result in additional variance. During realizability checking, we used

CUDD’s default dynamic reordering for all tools. This is common

practice in the related literature, e.g., [5, 26]. During construction,

we used the default for each tool2. During system execution, we

turned off dynamic reordering for Spectra and JITS because, for

both, it creates unpredictable occasional extremely slow steps.

Third, the specifications we used in the evaluation may not be

representative of real-world specifications. To alleviate this threat,

2Slugs turns it off, Spectra and JITS keep it on.
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Table 2: Comparison of Slugs (static), Spectra (static), and JITS: during synthesis

Specification

Construction Time (sec) Memory (# AN in thousands) Size on Disk (Mb)

Slugs Spectra JITS Slugs Spectra JITS Slugs Spectra JITS

Constr. Constr. Stor.

AMBA1 0.02 0.17 0.06 8.74 9.06 4.08 0.09 0.35 0.05

AMBA2 0.25 1.63 0.16 57.07 69.77 13.07 0.69 2.79 0.24

AMBA3 2.94 130.33 1.08 562.94 904.68 65.29 9.48 33.07 0.94

AMBA4 30.17 1030.89 4.34 2649.62 2614.18 139.69 62.63 107.64 1.95

AMBA5 n/a – 10.83 n/a n/a 277.75 n/a n/a 6.24

AMBA10 n/a – 140.81 n/a n/a 1641.08 n/a n/a 46.00

GenBuf5 0.65 0.27 0.09 40.96 15.13 6.49 6.52 0.47 0.09

GenBuf10 15.18 0.75 0.17 13.53 30.07 6.64 210.50 1.01 0.11

GenBuf20 xx 6.42 0.33 n/a 130.16 26.09 n/a 4.28 0.56

GenBuf30 xx 25.90 1.10 n/a 289.60 42.28 n/a 10.76 0.65

GenBuf40 xx 73.18 2.28 n/a 475.05 50.42 n/a 16.92 0.78

GenBuf90 xx 1486.84 33.68 n/a 2428.81 199.09 n/a 90.80 4.23

AirportShuttle 7.79 3.12 145.79 112.40 2.00 1.71

Junction2 13.20 0.27 294.16 13.96 10.43 0.29

Junction3 1157.32 5.54 5089.20 139.77 189.78 4.87

RoboticArm 12.33 5.74 282.34 67.91 9.69 1.96

SimpleVehicle 8.39 0.79 197.01 47.63 6.44 1.23

Table 3: Comparison of Spectra (static) and JITS: during system execution

Specification

Load Time (sec) Memory (# AN in thousands) Single Step Time (ms)

Spectra JITS Spectra JITS JITS w/ Bk. Spectra JITS JITS w/ Bk.

AMBA1 1.35 1.17 31.78 27.44 30.24 0.86 0.81 0.80

AMBA2 5.14 1.72 126.47 104.89 110.98 1.78 2.19 2.14

AMBA3 108.58 5.62 624.18 231.46 236.48 2.91 2.34 2.33

AMBA4 xx 22.93 n/a 355.30 420.65 n/a 3.22 3.26

AMBA5 xx 119.90 n/a 611.46 711.47 n/a 4.22 4.24

AMBA10 xx 2539.67 n/a 2488.72 2724.19 n/a 11.58 11.95

GenBuf5 1.64 1.43 98.30 49.77 66.55 1.95 1.52 1.67

GenBuf10 2.59 1.57 149.22 98.18 135.81 2.76 2.50 2.47

GenBuf20 13.84 3.17 349.35 165.27 161.71 6.03 5.20 4.97

GenBuf30 58.46 6.30 550.22 238.35 223.16 9.77 9.37 9.14

GenBuf40 170.52 12.61 980.38 422.54 394.45 16.12 14.52 13.48

GenBuf90 xx 114.39 n/a 1646.85 1580.73 n/a 56.38 53.11

AirportShuttle 5.33 25.55 567.82 823.21 955.25 4.06 4.45 4.56

Junction2 15.20 2.19 1513.84 1607.80 1834.58 4.80 5.20 5.43

Junction3 xx 54.46 n/a 5321.92 6031.35 n/a 60.55 59.62

RoboticArm 20.63 24.23 806.99 1214.83 1258.72 7.25 8.22 8.17

SimpleVehicle 132.38 10.55 2249.34 1520.19 1631.03 8.82 8.18 8.07

we used several existing benchmarks from the literature. For the

AMBA and GenBuf we used different number of masters, as is com-

mon practice in related literature. For the SYNTECH specifications,

we chose all specifications where number of variables is greater

than 40, see Sect. 5.1.

Finally, our system execution setup runs the controller for 10,000

steps against a random (yet correct) environment, see Sect. 5.3. In

practice, environment behavior is not expected to be random. Real

environment behavior is not available for the specifications at hand.

That said, we are not aware of reasons to believe that next step

performance against a real environment would be different than

what we observed, neither for Spectra nor for JITS.

6 RELATEDWORK

GR(1) synthesis was introduced in [31]. It has since been used and

investigated by many, including, e.g., Kress-Gazit et al. [19, 39],

who used GR(1) in robotics; Maoz and Ringert [23], who showed

GR(1) synthesis for specification patterns; Cavezza and Alrajeh [8],

who investigated assumptions refinement in unrealizable GR(1)

specifications, to list a few. Several tools support GR(1) synthesis,
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e.g., RATSY [4], Slugs [13], and Spectra [25]. None of these works

and tools considered just-in-time synthesis.

Heuristics to improve the running time performance of GR(1)

synthesis have been suggested in [10, 15, 34]. Specifically, Firman et

al. [15] present and evaluate heuristics at the level of the controlled

predecessor computation and BDDs, as well as heuristics for early

detection of fixed-points and early detection of unrealizability. The

work, however, is limited to accelerating the realizability checking

phase. It has no effect on the controller construction phase and

no effect on system execution performance. The suggested heuris-

tics are implemented in Spectra. As noted earlier, our comparison

against Spectra includes all these heuristics.

Dathathri and Murray [10] suggest efficient GR(1) synthesis for

specifications with singleton liveness guarantees, i.e, guarantees

that are limited to a single state. Our work, however, is independent

of any such restrictions on the GR(1) specifications.

Schlaipfer et al. [34] present an approach to GR(1) synthesis

without, what they refer to as a monolithic strategy, applied to

hardware synthesis. They synthesize several separate strategies,

one for each justice guarantee, and manage them via auxiliary

circuits. This reduces strategy construction time and memory usage

at the expense of a major increase in circuit size. Evaluation is

limited to the AMBA specifications.

Heuristics to improve realizability and strategy construction

times have also been suggested in the series of SYNTCOMP compe-

titions, e.g., [17]. The competition measures realizability checking

and strategy construction times where the targets are hardware

circuits, not software systems. Evidently, JITS is applicable to syn-

thesized software systems, not hardware circuits. Moreover, the

specifications used in the competition are either LTL or safety-only

specifications. Our work focuses on GR(1) specifications, which on

the one hand are not as expressive as LTL but on the other hand

include not only safety but also justice assumptions and guarantees.

Thus, we cannot evaluate our work against the competition’s tools

and specifications.

In particular, Strix [21] is an LTL reactive synthesis tool, which

has recently gained attention due to promising results in the SYNT-

COMP competition. Strix decomposes the LTL formula into sim-

pler formulas, translates these on-the-fly into deterministic parity

automata, solves the intermediate parity games using strategy iter-

ation, and finally translates the winning strategy, if it exists, into

a Mealy machine or an AIGER circuit with optional minimization

using external tools. Only during the last step, the authors discuss

encoding of the Mealy machine as a BDD. Hence, one may con-

sider applying the concept of JITS (perhaps redesigned to adapt to

the domain of deterministic parity automata instead of GR(1)) to

revise this encoding and open the way for efficient execution of

controllers synthesized with Strix.

Finally, one may consider JITS to be similar to on-the-fly algo-

rithms in model checking and games analysis, e.g., [7, 35]. However,

these algorithms are meant to improve the performance of verifica-

tion or realizability checking. JITS, in contrast, is a novel means for

the execution of the synthesized system. It uses the same realizability

checking as the static approaches to GR(1) synthesis.

7 CONCLUSION

We introduced JITS, just-in-time synthesis for GR(1). JITS provides

a novel, fast, and flexible means to execute synthesized controllers.

It does not compromise the correct-by-construction promise, while,

from architectural and methodological perspectives, it opens the

way for the decoupling of realizability checking and system execu-

tion.

We have implemented JITS on top of the Spectra synthesizer. We

showed that compared to existing, static approaches, JITS greatly

improves overall synthesis time, memory usage, and output size,

and scales better with larger specifications. Moreover, we showed

that JITS remains competitive compared to the static approach in

system execution performance w.r.t. time and space.

As future work we consider the following research directions.

First, one may investigate how to adapt JITS to specific system

execution platforms, and how to control the tradeoff between per-

formance and memory consumption of JITS execution, potentially,

for example, using BDD reordering or different, possibly adaptive,

caching mechanisms.

Second, to further enhance the configurability of synthesized

controllers at load time, one may suggest different storing mecha-

nisms.

Finally, most recently, Amram et al. have presented GR(1)*, an ex-

tension of GR(1) with existential guarantees [3]. One may consider

to define and implement JITS for GR(1)*.
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