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ABSTRACT
Reactive synthesis is an automated procedure to obtain a correct-by-

construction reactive system from its temporal logic specification.

GR(1) is an expressive fragment of LTL that enables efficient synthe-

sis and has been recently used in different contexts and application

domains. In this paper we investigate the dynamic-update problem

for GR(1): updating the behavior of an already running synthesized

controller such that it would safely and dynamically, without stop-

ping, start conforming to a modified, up-to-date specification. We

formally define the dynamic-update problem and present a sound

and complete solution that is based on the computation of a bridge-

controller. We implemented the work in the Spectra synthesis and

execution environment and evaluated it over benchmark specifi-

cations. The evaluation shows the efficiency and effectiveness of

using dynamic updates. The work advances the state-of-the-art

in reactive synthesis and opens the way to its use in application

domains where dynamic updates are a necessary requirement.

ACM Reference Format:
Gal Amram, Shahar Maoz, Itai Segall, and Matan Yossef. 2022. Dynamic

Update for Synthesized GR(1) Controllers. In 44th International Conference on
Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510054

1 INTRODUCTION
Reactive synthesis is an automated procedure to obtain a correct-

by-construction reactive system from its temporal logic specifica-

tion [35]. Rather than manually constructing an implementation of

a reactive controller and using model checking to verify it against

a specification, synthesis offers an approach where a correct im-

plementation is automatically obtained for a given specification, if

such an implementation exists.

GR(1) is a fragment of Linear Temporal Logic (LTL) that has an

efficient symbolic synthesis algorithm [7] and whose expressive

power covers most of the well-known LTL specification patterns of

Dwyer et al. [10, 24]. GR(1) specifications include assumptions and

guarantees about what needs to hold on all initial states, on all states

and transitions (safety), and infinitely often on every run (justice).

GR(1) has been used in several application domains, e.g., to spec-

ify and implement autonomous robots [20, 25], control protocols

for smart camera networks [33], distributed control protocols for
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aircraft vehicle management systems [32], and device drivers [36].

Several tools support GR(1) synthesis [6, 11, 26, 38].

Many reactive systems are very difficult or very expensive to

stop. Examples include mission and business critical systems whose

continuous operation is one of their key requirements. Thus, when

updates in functionality are required, the behavior of such a system

has to be updated while it is executing. Indeed, our main motivation

for the present work comes from a proof-of-concept project we

have conducted, on using reactive synthesis in several application

domains, as a collaboration between Tel Aviv University and Nokia

Bell Labs. Dynamic update was presented by the industry partner

as a necessary requirement for the use of reactive synthesis in the

target application domain.

In this work we present a formulation and solution of the
dynamic-update problem for synthesized GR(1) reactive sys-
tems. Specifically, given an already executing controllerC1, synthe-

sized from some GR(1) specification Spec
1
, and given a new GR(1)

specification Spec
2
, we formalize a notion of an update-strategy, a

strategy for the system to force the execution on a path from the

current state of C1 to some state of C2, a controller synthesized

from Spec
2
, while taking some steps in compliance with Spec

1
and

from some point on start taking steps in compliance with Spec
2
.

Note that an update-strategy execution starts from the current state

of C1, which is a moving target. The dynamic-update problem is to

compute and then execute such an update-strategy, if one exists.

We solve the dynamic-update problem for GR(1) by showing

how to construct a bridge controller, which implements an update-

strategy, and apply it to C1 dynamically, while it is executing. We

prove that our solution is correct and complete, i.e., that when an

update is possible we find one and execute it, and when an update

is not possible, we report so. We further prove that our solution is

optimal, i.e., that it minimizes the maximal possible bridge length.

Finally, we present a heuristic optimization based on the early

detection of a successful update, which aims to save computation

time and to shorten the length of the actual bridge that is executed.
This optimization is one of the unique features of our work, taking

advantage of the dynamic nature of the problem.

An important characteristics of our setup and algorithms is that

they are symbolic. Thus, the update-strategy we compute is a sym-

bolic representation of all possible correct and shortest bridges.

Then, the actual bridge that will be executed depends on the state

in which the running controller might be in when the bridge is

ready, and of course on the behavior of the environment.

Note that the dynamic-update problem is relevant for setups

where the synthesized controller is implemented in software, as in,

e.g., various robotics setups [20, 25, 26], and not in setups where

it is expected to be implemented as a hardware circuit, e.g., in the

AIGER format [5] used in the SYNTCOMP competition series [3].

https://doi.org/10.1145/3510003.3510054
https://doi.org/10.1145/3510003.3510054


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gal Amram, Shahar Maoz, Itai Segall, and Matan Yossef

Indeed, our solution takes advantage of the recently presented just-

in-time reactive synthesis [28], which is applicable only to software

implementations of synthesized controllers.

We have implemented dynamic updates on top of the open-

source Spectra synthesis and execution environment [1, 26]. Given

an already executing synthesized system, the implementation al-

lows the engineer to define a new specification and dynamically

update the executing system to comply with it. We deliberately di-

vide the implementation between two machines that communicate

over TCP, the machine that runs controller and bridge synthesis,

and the machine that executes the controller (e.g., a robot). Thus,

our implementation supports a truly remote dynamic deployment

as is indeed required in the target application domain defined by

Nokia Bell Labs.

We evaluated our work using three sets of benchmark specifi-

cations. The evaluation shows the efficiency and effectiveness of

our work. All examples and experiment results we report on in

this paper are implemented in Spectra and available in supporting

materials [2].

The dynamic-update problem for synthesized controllers has

been studied before. In particular, Nahabedian et al. studied dynamic

updates in the context of event-based controller synthesis [30].

Our work is distinctive in several ways, most notably (A) in its

applicability and expressiveness - support for the GR(1) fragment

of LTL, including safeties and justices, with a computation model

that is not specific to event-based specifications; and (B) in its

efficiency and scalability - thanks to the symbolic nature of the

algorithms and implementation. We discuss related work in detail

in Sect. 8.

1.1 An Illustrative Running Example
To demonstrate the dynamic-update problem and our solution, we

consider a variant of the obstacle evasion specification, which is

inspired by robotic motion planning and was recently used as a

benchmark in the synthesis literature, see, e.g. [11, 14, 31]. Moreover,

this problem is very similar in nature, size, and expected updates,

to the target application developed in Nokia Bell Labs, a general

platform for scheduling the activities of several robots while they

patrol and perform different tasks in an environment with several

target locations and obstacles. The target locations, the specific

tasks, and the location of most obstacles are fixed during most

normal execution but do change dynamically from time to time.

Scalability in terms of the number of locations and dynamic update

without stopping are considered critical requirements.

Consider a single cell sized robot and a 2 × 2 cells sized obstacle,

both moving on an n × n grid. Initially, the robot and the obstacle

start in two opposite corners of the grid. Both the robot and the

obstacle can move to any adjacent cell. The robot moves twice

upon every step of the obstacle. Moreover, the obstacle chases

the robot and always tries to get closer to it. The problem is to

synthesize a strategy for the robot so that collision never occurs,

regardless of the obstacle’s behavior. We model the robot’s and ob-

stacle’s locations via two coordinates robX, robY ∈ {1, . . . ,n}, and
obsX, obsY ∈ {1, . . . ,n−1}.1 We provide the complete specification

with simulation videos in supporting materials [2].

1
The coordinates specify the location of the obstacle’s upper left corner.

1 . . .
2 pred robotLoc(x,y): robX = x & robY = y;
3

4 // locations the robot must never visit
5 gar Avoid1: G !robotLoc(2,1);
6 gar Avoid2: G !robotLoc(6,4);
7 gar Avoid3: G !robotLoc(7,7);
8 gar Avoid4: G !robotLoc(7,4);
9

10 // locations the robot must visit infinitely often
11 gar AlwEventuallyVisit1: GF robotLoc(3,3);
12 gar AlwEventuallyVisit2: GF robotLoc(1,7);
13 gar AlwEventuallyVisit3: GF robotLoc(5,2);
14

15 // a switching condition
16 switch robotLoc(2,8);

Listing 1: Examples of safety (avoid) guarantees, justice (always-
visit) guarantees, and a switching condition, using Spectra syntax.
These are the parts of the specification that may be updated from
time to time in our example.

In addition to evading the moving obstacle, in our specification,

the robot has some safety guarantees, to avoid certain locations

(avoid guarantees) and some justice guarantees, to visit some other

locations infinitely often (always-visit guarantees).
2
We provide an

example of such guarantees in Lst. 1. Fig. 1 illustrates our example

grid world.

Most importantly for the dynamic update context, the avoid and

always-visit guarantees may change from time to time. Specifically,

we consider that during the controller’s execution, the system re-

quirements may change, so the engineers have to update the robot’s

avoid and always-visit guarantees, while the robot is running and

as it continues to evade the moving obstacle. Moreover, we include

an optional switching condition, cond, specified by the declaration

switch. The switching condition requires the robot to switch to

the new specification only in a state where the assertion cond holds.

Again, the need for supporting an optional switching condition, as

part of the dynamic-update problem, is a requirement defined by

Nokia Bell Labs.

Note that this example synthesis problem is not trivial. As the

robot evades the obstacle that chases it, it has not only to avoid

certain locations, but also to always eventually visit some other

locations. Since the obstacle is chasing it, in order to make sure

it can visit a location, the robot sometimes has to first “lure” the

obstacle to move farther from the target location in point and then,

when the obstacle is far enough, race to get to the target in point

before the obstacle gets there or blocks the way. On top of this

non-trivial behavior, we add here the dynamic update of the avoid

and always-visit locations.

We now demonstrate the dynamic-update use case. The engi-

neers have synthesized a controller from an obstacle evasion speci-

fication and started executing it on a robot. Using this controller,

the robot evades the moving obstacle that chases it while avoid-

ing some cells and always eventually visiting some other cells, as

specified in the specification. After some time, the requirements

change, so the engineers write a new specification that includes

up-to-date avoid and always-visit guarantees (and optionally a

switching condition). Thus, while the first controller is running,

the engineers use our tool to synthesize a controller for the new

2
This is an instance of the patrolling pattern from [29].
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Figure 1:An illustration of our example in a gridworldwith a robot
that has to avoid the A cells and always-visit the V cells, all while
evading a 2x2 moving obstacle chasing it.

specification and, most importantly, a bridge-controller. Then, if the

bridge covers the state in which the first controller happens to be

at when it is ready, the bridge forces the execution of the robot to

take some steps in compliance with the first specification, reach a

state that satisfies the switching condition (e.g., robotLoc(2,8)
(see Lst. 1)), and from that point on start taking steps in compliance

with the new specification, eventually starting to execute using the

new controller.

2 PRELIMINARIES
2.1 Reactive Systems
Given a set of Boolean variablesV , a state s overV is a subset ofV ,

i.e., s ∈ 2
V
. If s1, . . . , sn are states over the disjoint setsV1, . . . ,Vn ,

resp., we write (s1, . . . , sn ) as an abbreviation for s1 ∪ · · · ∪ sn . An
assertion overV is a Boolean formula overV . For an assertion ρ
and a state s , we write s |= ρ, if ρ is evaluated to true by assigning

true to all variables in s and false to variables in V \ s . If s |= ρ,
we say that s is a ρ-state. For a set of variablesV ,V ′

is the set of

variables obtained by replacing each v ∈ V with its primed version,
v ′ ∈ V ′

. Furthermore, for a state s over V , s ′ is a state over V ′

defined by s ′ = {v ′
: v ∈ s}.

A reactive system repeatedly reacts to inputs coming from its

environment. This interaction is modeled as a two-player game,

played between the environment player and the system player.

At each turn the environment provides an input, and the system

replies with an output. This interaction is formally captured through

a game structure.

A game structure is a tuple GS = (X,Y, θe , θs , ρe , ρs ) 3 where
(1) X is the set of variables owned by the environment; (2) Y is the

set of variables owned by the system, and it is disjoint toX; (3) θe is
an assertion overX, which constitutes the initial assumptions of the

3
Some presentations use a game structure that includes a graph and a winning condi-

tion formula. In our notation they are separate. The difference is only notational.

environment; (4) θs is an assertion overX∪Y, which constitutes the

initial guarantees of the system; (5) ρe is assertion over X∪Y∪X′

which constitutes the safety assumptions of the environment; and

(6) ρs is an assertion over X∪Y∪X′∪Y ′
which constitutes the

safety guarantees of the system.

Intuitively, a game structure models the two-player game de-

scribed above as follows. First, the environment chooses an input

s0x ∈ 2
X
such that s0x |= θe , and the system replies with an output

s0y ∈ 2
Y

such that (s0x , s
0

y ) |= θ
s
. (s0x , s

0

y ) forms the play’s first state,

and then the players repeatedly construct the next states by choos-

ing inputs and outputs. From state s , the environment can choose

an input sx ∈ 2
X
if (s, s ′x ) |= ρe , and the system can respond with

sy ∈ 2
Y

if (s, s ′x , s
′
y ) |= ρs . Game structures naturally extend to

finite type variables, which are not necessarily Boolean.

Example 2.1. For the obstacle evasion example (see Sect. 1.1),

X={obsX, obsY } andY={robX, robY }. The initial assumptions and

guarantees are: θe=(obsX = 7∧ obsY = 7); θs=(robX = 1∧ robY =
1). The safety assumptions model the way the obstacle moves (to an

adjacent cell at each step). The safety guarantees are a conjunction

of movement restriction (two cells at most at each step) and the

avoid guarantees from Lst. 1, e.g., robX , 2 ∨ robX , 1.

Let GS = (X,Y, θe , θs , ρe , ρs ) be a game structure. The game

structure’s states are 2
X∪Y

. A transition from state s to state t is
consistent with ρe (resp. ρs , (ρe , ρs )) if (s, t ′) |= ρe (resp. |= ρs ,

|= ρe ∧ ρs ). Consistency with ρe is defined also when t ∈ 2
X
. A

transition that is consistent with ρe (resp. ρs , (ρe , ρs )) is called a

ρe -transition (and resp. for the others). A sequence of states is con-

sistent with ρe (resp. ρs , (ρe , ρs )) if any pair of consecutive states

in it is consistent with ρe (resp. ρs , (ρe , ρs )). A state s is a deadlock
for the environment if ∀sx ∈ 2

X((s, s ′x ) ̸|= ρe ). s is a deadlock for

the system if ∃sx ∈ 2
X((s, s ′x ) |= ρe ∧ ∀sy ∈ 2

Y ((s, s ′x , s
′
y ) ̸|= ρs )).

A play is a sequence of states such that (1) the first state in the

sequence s0 |= θe ∧ θs , (2) any pair of consecutive states in the

sequence is consistent with (ρe , ρs ), and (3) the sequence is either

infinite, or ends in a deadlock.

The system employs a strategy to repeatedly choose the next

output. This output depends on the given input and on the states

traversed so far. A strategy is a partial function σ : (2X∪Y )+×2X →

2
Y
. A state s is consistent with σ if for any sx ∈ 2

X
such that

(s, s ′x ) |= ρe , (s, sx ) is in the domain of σ . We further require that a

strategy satisfies the following: if s0, . . . , si ∈ (2X∪Y )+ is consistent

with σ , and (si , s
′
x ) |= ρe for sx ∈ 2

X
, then (1) s0, . . . , si , sx is in the

domain of σ , (2) for sy = σ (s0, . . . , si , sx ), (si , (s
′
x , s

′
y )) |= ρs , and

(3) we say that (s0, . . . , si , (sx , sy )) is consistent with σ . A play is

consistent with σ if every prefix of it is consistent with σ . We say

that σ is from S ⊆ 2
X∪Y

if every s ∈ S is consistent with σ .
A controller is an algorithm that implements a strategy. There-

fore, a controller receives a state and an input as arguments, and

returns an output. During a play, the controller is repeatedly applied

and reacts to the sequence of inputs produced by the environment.

Hence, a controller retains memory from one invocation to another.

Remark 1. For the study of dynamic updates, we consider game
structures with no initial constraints, since an update occurs from
an “intermediate" state, which depends on the execution of another,
running controller. All notations defined above are transferred to game
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structures with no initial constraints with a minor exception: we do
not set rules for the initial state of a play.

2.2 The GR(1) Winning Condition
A GR(1) formula over a set of variables V is a formula of the form

∧mi=1GF (J
e
i ) → ∧nj=1GF (J

s
j ), where J

e
1
, . . . , Jem, J

s
1
, . . . , J sn are asser-

tions over V . G and F are the Linear Temporal Logic (LTL) [34]

operators, Globally and Finally, resp. Therefore, a GR(1) formula

states that if the assertions Je
1
, . . . , Jem (the justice assumptions) hold

infinitely often, then J s
1
, . . . , J sn (the justice guarantees) hold infin-

itely often as well.

Example 2.2. For the obstacle evasion example (see Sect. 1.1), the

justice guarantees are the Always Eventually Visit guarantees in
Lst. 1, e.g., GF (robX = 3 ∧ robY = 3).

For a game structure GS and a GR(1) formula φ over X ∪ Y,

(GS,φ) is a GR(1) specification. For an infinite play π = s0, s1, . . .
we write π |= φ if (1) there exist 1 ≤ k ≤ m and i ≥ 0 such that

∀j ≥ i(sj ̸ |= Jek ), or (2) for each 1 ≤ k ≤ n, there are infinitely

many states si in π such that si |= J sk . Given a specification (GS,φ),
the play π wins for the system if (1) π ends in a deadlock for the

environment, or (2) π is infinite and π |= φ. A strategy wins from

state s if any play from s , consistent with it, wins for the system.

The winning region of a specification is the set of all states from

which a winning strategy exists. A strategy is a winning strategy if

it wins from every state in the specification’s winning region.

3 PROBLEM DEFINITION
Consider a situation in which an engineer synthesized a controller

C1 w.r.t. some GR(1) specification, Spec
1
, and during an execution

of C1, new up to date system requirements are defined, formulated

in a new specification, Spec
2
. Apparently, the engineer can use

Spec
2
to synthesize a new controller C2, stop C1 execution, and

start executing C2. However, the execution of the system we deal

with must not be stopped; it should be updated to behave according

to Spec
2
while it is running. Hence, from a user perspective, once

Spec
2
is provided to the synthesizer, the controller can take several

steps in compliance with Spec
1
and, from some point on, should

satisfy Spec
2
.

Below we elaborate on the requirements that an update-strategy

should satisfy. Then, we formalize these to obtain a precise defini-

tion of the dynamic-update problem.

Timing of change in environment behavior.Weassume that

once Spec
2
is available, the environment starts behaving according

to its safety assumptions. This assumption is reasonable when the

environment is independent and uncontrollable. In these cases we

adapt Spec
2
immediately, as it provides an up-to-date perspective

on the environment’s behavior. However, minor modifications in

the solution we shall provide capture other possibilities one may

consider, as we elaborate later in Remark 5.

A switching condition. The dynamic-update problem may in-

clude a switching condition. That is, an assertion that must hold at

the state in which the controller starts obeying Spec
2
’s guarantees.

For example, we may require that the switch will occur only when

the robot is located at some specified region (i.e., as we have done

in Lst. 1), or when the distance from the moving obstacle exceeds

some threshold etc. We remark that the requirement to allow the

definition of a switching condition as part of the problem definition

came from the concrete case study we work on with Nokia Bell

Labs.

Note that the switching condition is optional. If the engineer

does not provide a switching condition, we consider it to be true.
A bounded switching phase.We require that the system up-

date (unlike, e.g., satisfaction of a justice guarantee) occurs within a

bounded number of steps. Consequently, the dynamic-update prob-

lem formulation excludes the possibility of an unbounded switching

phase. We thus require that reaching a state that satisfies the switch-

ing condition and from which Spec
2
’s guarantees hold will occur

within a bounded number of steps. Note, however, that we do not

assume a given, fixed bound, as input, but only require that a bound

on the length of the switching phase exists.

We now formalize all the above. Note that for the simplicity

of presentation, in the definition below we consider that the two

specifications are defined over the same variables. This is justified as

follows: if Spec
1
is defined over (X1,Y1), and Spec2 over (X2,Y2), we

may regard both as specifications over (X = X1∪X2,Y = Y1∪Y2),

since variables that are defined but do not appear in a specification

have no effect on its semantics.

Definition 3.1 (update-strategy). Let Spec
1
= (GS1 =

(X,Y, θe
1
, θs

1
, ρe

1
, ρs

1
),φ1) and Spec

2
= (GS2 = (X,Y, ρe

2
, ρs

2
),φ2)

4

be GR(1) specifications, and let cond be an assertion overX∪Y (the

switching-condition). A strategy σ is an update-strategy from state

s0 if, assuming the environment takes actions in compliancewith ρe
2
,

there exists k ≥ 0 such that for every prefix of a play, s0, s1, . . . , sk ,
consistent with σ , there exists si with i ≤ k , for which:

(1) the switching phase prefix s0, . . . si is consistent with

(ρe
2
, ρs

1
);

(2) the switching condition holds: si |= cond;
(3) the switching phase future si , si+1, . . . is consistent with

(ρe
2
, ρs

2
) and si , si+1, . . . |= φ2.

Intuitively, the state si in Def. 3.1 is the state in which the switch

actually occurs. (1) The system takes ρs
1
-transitions until reaching

si , (2) si satisfies the switching condition, and (3) the system takes

ρs
2
-transitions from si . If there is no switching condition, we set

cond = true (and then item (2) holds vacuously).

Definition 3.2 (dynamic-update problem). Given game structures

and a switching condition as in Def. 3.1, compute a strategy σ
and a setW , such that σ is an update-strategy from each s ∈ W
(soundness), and there exists an update-strategy from a state s iff
s∈W (completeness), iff such a set and strategy exist.

Illustration 1. Figure 2a illustrates the dynamic-update problem.
The red dashed arrow denotes a C1 computation that reaches state
s0, from which we apply an update-strategy. The update-strategy
takes several (ρe

2
, ρs

1
)-transitions (red arrows) until reaching state si

(i = 5 in our example) that satisfies cond (marked in green). From
s5, only (ρe

2
, ρs

2
)-transitions are taken (blue arrows). The suffix of

that computation is performed by the controller C2, which ensures
satisfaction of Spec

2
. Note that s3 also satisfies cond, but it is not our

4Spec
2
does not include initial constraints as such constraints have no role in the

dynamic-update context, see Sect. 2, Rem. 1
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(a) Update-strategy

(b) Bridge construction and its execution

Figure 2: Illustrations of an update-strategy and our solution. Red
arrows denote Spec

1
-outputs, blue arrows denote Spec

2
-outputs, and

green states satisfy the assertion cond

“switching state", since two additional ρs
1
-transitions were taken after

visiting it.

Example 3.3. In our obstacle evasion example, the required

update-strategy is not trivial. The robot must consider the old and

new avoid guarantees, which may block some paths to and from

the switching cell, do it while observing the obstacle’s locations

and reacting to its moves, and eventually end up in a state from

which the new controller can take over.

4 SOLVING DYNAMIC UPDATE
To solve the dynamic-update problem we need to synthesize an

update-strategy or state that such a strategy does not exist. We solve

the problem in two stages. First, we compute the system’s winning

region w.r.t. Spec
2
= (GS2,φ2), W2, and synthesize a matching

controller C2. If W2 is empty, we already know that an update-

strategy does not exist.

Second, ifW2 is not empty, we move on to synthesize a bridge-

controller B. The bridge forces the play from the current (but yet

unknown) state in C1 intoW2, in finitely many steps. On its way,

the bridge makes sure passing a state that satisfies cond after which

violations of the safety guarantees of Spec
2
(i.e., ρs

2
) are not allowed.

Note that the constructions ofC2 and the bridge-controller B are

independent of one another. C2 is constructed from Spec
2
, and the

bridge is constructed using a reachability game, based on the old and

new specifications, as we elaborate next. Furthermore, importantly,

both constructions are independent of the controller C1, which

keeps running (typically on a separate machine) while C2 and the

bridge-controller B are constructed.

The computation ofW2 and C2 is done by a standard GR(1) syn-

thesis and we omit its details. We turn to describe the construction

of the bridge-controller and the execution of the update. Finally,

we discuss correctness, optimality, and complexity.

Remark 2. Note that the bridge-controller that we compute in
Sect. 4.1 below does not represent a single possible update. Rather,
it is a symbolic representation of all possible correct and shortest

bridges. Then, in Sect. 4.2, we show how a concrete bridge is executed,
depending on the state in which the running controller might be in
when the bridge is ready, and on the behavior of the environment in
every step of its execution.

4.1 Bridge-Controller Construction
To synthesize a bridge-controller we extend Y with two variables,

switch and allowed. Intuitively, switch is turned on by the system

to mark that we switched to ρs
2
-transitions. Unlike switch, allowed

is an auxiliary variable, i.e., a variable whose value is uniquely

determined by its previous value and by the valuation of all other

variables. allowed monitors the play-states, and evaluates to true
only when the system is allowed to switch: if only ρs

2
-transitions

have been taken since visiting a cond-state, i.e., a state where the
assertion cond holds.

We consider the game structure ĜS = (X,Y ∪

{switch, allowed}, ρe
2
, ρs ) where ρs is the conjunction of the

formulas listed below, divided into three groups. Transitions (T1,T2)
set rules for an appropriate use of ρs

1
and ρs

2
. Switch (S1-S3) set

rules for the valuation of switch. Permission (P1) defines how

allowed is updated in each step. Hence,

ρs =
∧

{T1,T2,S1,S2,S3,P1},where

T1:= ρs
1
∨ ρs

2
. The systemmust always follow Spec

1
or Spec

2
safety

guarantees.

T2:= switch′ → ρs
2
. When switch is true, only ρs

2
-transitions are

allowed.

S1:= (¬switch ∧ switch′) → allowed′. We turn on switch for the

first time only if we are allowed to.

S2:= switch → switch′. Once switch is turned on, it remains true.

S3:= ¬ρs
1
→ switch′. Whenwe take a¬ρs

1
∧ρs

2
-transition, wemust

switch.

P1:= allowed′ ↔ ((cond ∧ ρs
2
) ∨ (allowed ∧ ρs

2
)). allowed is valu-

ated to true iff (1) we take a ρs
2
-transition from a cond-state,

or (2) allowed holds, and we continue with a ρs
2
-transition.

Let Ŷ = Y ∪ {switch, allowed}, V̂ = X ∪ Ŷ, and Ŵ2 = {s ∈

2
V̂

: s |X∪Y ∈W2} =W2×2
{switch,allowed}

, where forU ⊆ V , s |U

denotes the state s ∩ U over U. Let Ŵ ⊆ 2
V̂

be the set of states

from which the system can force reachingŴ2∧ switch, and let B be

a matching controller. That is, B wins the reachability game with

target set Ŵ2 ∧ switch [17, Ch. 2].

Ŵ and B are constructed by the procedure presented in Alg. 1.

The algorithm employs the modal µ-calculus [19] controllable-
predecessor operator [7], which is defined as follows. Let X

and Y be the environment and system variables, resp., and ρe and

ρs be matching safety assumptions and guarantees, resp. For a set

of statesW ,

(ρe ,ρs )(W ) := {s ∈ 2
X∪Y

: ∀sx ∈ 2
X
(
(s, s ′x )|=ρ

e→

∃sy ∈ 2
Y ((s, s ′x , s

′
y )|=ρ

s∧(sx , sy ) ∈W )
)
}.

That is, (ρe ,ρs )(W ) includes all states from which the system

can force reachingW in a single step: for each legal input by the

environment, the system has a legal output to reachW .

Consider Alg. 1, and observe that there exists k ≥ 0 such that,

for s ∈ Ŵ , B forces reaching Ŵ2 ∧ switch from s within k steps.

Indeed, k is the number of fixed-point iterations performed in the
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Algorithm 1 Computing Ŵ and a matching bridge-controller B

1: j = 0, Z0 = Ŵ2 ∧ switch, B0 = ∅

2: repeat
3: j++
4: Z j = Z j−1 ∪ (ρe

2
,ρs )Z j−1

5: Bj = Bj−1 ∪ {(s, t) ∈ (Z j \ Z j−1) × Z j−1 : (s, t
′) |= ρs }

6: until Z j = Z j−1
7: Ŵ = Z j ,B = Bj , return Ŵ ,B

computation of Ŵ . In the next subsection we prove that B is the

bridge-controller we are interested in.

Remark 3. To construct B, one may suggest an alternative, simpler,
naive approach to the problem, using two reachability strategies: a
(ρe

2
, ρs

1
)-reachability strategy with target cond, from which we can

apply a (ρe
2
, ρs

2
)-reachability strategy with targetW2. This suggestion

is sound, but incomplete, i.e., it may not find all states from which an
update-strategy exists. For example, consider a state s such that (1) for
some ρe

2
-inputs from s , the system has a ρs

1
-response that leads the

play to a state from which an update-strategy exists, and (2) for all
other ρe

2
-inputs from s , the system has a ρs

2
-response that leads to a

state from which an update-strategy exists. Hence, an update-strategy
exists from s , but the two-phase reachability suggestion above fails to
identify s .

Remark 4. We present switch and allowed as new variables only
for the presentation of the bridge construction. In practice, we do
not add them to the game structure and they only serve as memory
variables for the bridge-controller: when activated fromW = Ŵ |X∪Y ,
B forces reaching W2 within k steps, for some k > 0, so that the
memory variable switch is true. Recall that if switch is true, then
only ρs

2
-transitions have been taken since visiting a cond-state.

Remark 5. We construct the bridge while considering the safety
assumptions ρe

2
, as we made a design decision, to immediately adapt

the new environment assumptions (see the considerations we presented
before Def. 3.1). Other options are easily supported via minor mod-
ifications in the game structure ĜS. As an example, we can let the
controller choose when the environment switches from ρe

1
to ρe

2
, by

adding a fresh system variable and constraining the environment’s
behavior on its value. Likewise, we can decide that the change in
assumptions will occur in a cond-state, when the system switches to
ρs
2
etc. These alternatives are relevant for setups where the timing of

the change in the environment can be controlled by the system or its
operator.

4.2 Execution of the Update
We are ready to present the execution of the update. Given Spec

2
’s

winning regionW2, a matching controllerC2, a bridge-controller B,
and its winning regionW , Alg. 2 shows the execution of the update

U as follows. First, ifW = ∅, then an update-strategy does not

exist and we announce it (line 0). Otherwise, we look at the current

play-state s0, and check whether s0 ∈W (initial activation (I)). In

case s0 ∈W , we proceed to (II), the code that we activate from this

point on. In (II), we iteratively generate a response sy given the

current state s and the input sx . We apply B from s0, until reaching

Algorithm 2 The execution of the updateU

0: ifW = ∅ then return “switching cannot be forced from any

state"

// (I). initial activation from state s0
1: if s0 <W then return “switching cannot be forced from the

current state"

// (II). a response from state s and input sx
1: if (s <W2) ∨ (switch == false) then sy = B(s, sx )
2: else sy = C2(s, sx )
3: return sy

W2 while switch is true (line (II).1). Afterwards, we apply C2 for

the remainder of the play (line (II).2).

In case s0 <W , we report to the engineer that an update-strategy

does not exist from the current state (line (I).1). Note that if s0 <W ,

the engineer can try and execute Alg. 2 again, as the play may

traverse intoW .

Illustration 2. Figure 2b illustrates a bridge controller B, as com-
puted by Alg. 1, and how it is used. The dashed red arrow represents
a play prefix induced by the Spec

1
controller, C1. In parallel to this

play prefix, we compute the reachability bridge controller B, following
Alg. 1. Fortunately, the computation of B ends when the play prefix
reaches state s0, covered by B. Hence, the bridge takes control, takes
two (ρe

2
, ρs

1
)-transitions (red arrows), reaches a state si which satisfies

cond (i = 2 in our example, green states satisfy cond), takes an addi-
tional (ρe

2
, ρe

2
)-transition (blue arrow) and passes control to the Spec

2

controller C2 for the remainder of the play (dashed blue arrow).

4.3 Correctness, Optimality, Complexity
Our solution is sound and complete. If there is an update-strategy

we find it and execute it; if there is not any, we report so. Formally:

Theorem 4.1 (construction-correctness). Alg. 2 is sound and
complete:

(1) The algorithm implements an update-strategy fromW .
(2) There exists an update-strategy from s iff s ∈W .

Beyond correctness, we mention that the reachability strategy

minimizes the number of steps taken until the activation of the new

controller. To elaborate, the bridge not only minimizes the longest

possible switching phase length (denoted k), but also minimizes the

number of steps actually executed (denoted j), see Def. 3.1. Both
results follow from the next theorem.

Theorem 4.2 (bridge-optimality). For s ∈ W , let k(s) be the
minimal integer s.t. there exists an update-strategy from s that satisfies
the conditions of Def. 3.1 with the parameter k(s). Then, the bridge B
forces reaching Ŵ2 ∧ switch from s within, at most, k(s)+1 steps.5

The proofs of Thms. 4.1 and 4.2 appear in [2].

Finally, note that, asymptotically, the update controller synthesis

does not add computational cost to the GR(1) synthesis of the new

controller. The construction of the bridge involves a single fixed-

point loop and is thus computed in O(N ) symbolic operations,

5
The possible single redundant step reported in the theorem can be avoided by a minor

modification of ĜS . Mainly, turning on allowed when cond is reached. We decided to

give the “single-redundant-step" version as it slightly simplifies the correctness proof.
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Algorithm 3 Optimized computation of Z ⊆ Ŵ and B
(replacing Alg. 1)

1: j = 0, Z0 = Ŵ2 ∧ switch, B0 = ∅

2: repeat
3: s = C1’s current state

4: if (s,¬switch,¬allowed) ∈ Z j then
5: stop C1

6: Z = Z j ,B = Bj , return Z ,B
7: end if
8: j++
9: Z j = Z j−1 ∪ (ρe

2
,ρs )Z j−1

10: Bj = Bj−1 ∪ {(s, t) ∈ (Z j \ Z j−1) × Z j−1 : (s, t
′) |= ρs }

11: until Z j = Z j−1
12: Ŵ = Z j ,B = Bj , return Ŵ ,B

where N is the size of the state space. That said, the number of fixed-

point iterations is just the length of the maximal possible bridge,

and in practice, the length of the bridge is orders of magnitude

smaller than the state space, see our evaluation in Sect. 7.

Remark 6 (no overhead accumulation). Our solution enables
the seamless application of a sequence of dynamic updates. That is,
once the update completes and Alg. 2 returns an output from C2, C2

controls the execution, and another dynamic update can be applied
when necessary. Applying a sequence of updates comes at no cost in
terms of additional variables and thus no overhead is accumulated.

5 EARLY DETECTION OF SUCCESS
We propose an optimization for the execution of the update U ,

based on a modified construction of the bridge-controller. The

optimization we describe can lead to a shorter switch, i.e., reduce

the number of steps we take until switching to ρs
2
-transitions and

thus to a (GS2,φ2)-strategy. Furthermore, the optimization can

reduce the computation time of the bridge.

The optimization is based on a simple idea: rather than com-

puting the complete bridge B and only then checking whether the

current state of the executing controller is covered by it, we suggest

to check before every loop iteration of Alg. 1 whether the current

state of the executing controller was already covered by the set B
computed so far. In case B already covers the current state, we can

immediately apply Alg. 2, i.e., apply B until reaching its target, and

then switch to C2. In other words, instead of computing all states

from which an update can be executed, the optimization stops as

soon as the current state of the controller is within the part of the

bridge that was computed so far. This early detection of success,

allows to stop the computation of B and thus to reduce computation

time. We present this optimized construction in Alg. 3.

Illustration 3. Figure 3 illustrates an optimized bridge computation
of Alg. 3. The red dashed arrow represents a play prefix induced by the
Spec

1
controller C1. After the computation of each bridge component,

we check if the current play state has been covered. Fortunately, after
the computation of B3, the play reaches s0 which is covered by B
as computed so far. Hence, we do not compute the remaining (semi-
transparent) set B4 that Alg. 1 would have computed. We let B take
control and lead the play to B0, from which we activate C2.

Note that the optimization requires more communication be-

tween the synthesizer andC1 as well as multiple checks on whether

its current state allows to switch (Alg. 3, line 4). This additional com-

putation is however, negligible, as it involves only a small constant

number of symbolic operations.

Finally, note that the heuristic optimization does not compromise

soundness and completeness. It potentially reduces the number

of steps during the bridge construction and it never adds steps.

In our evaluation we present evidence that this optimization is

very effective in reducing the bridge’s computation time and actual

length when executed.

6 IMPLEMENTATION
We have implemented and integrated the bridge construction of

Alg. 1, the proposed dynamic-update strategy construction of Alg. 2,

and further the optimized bridge construction of Alg. 3, in the

Spectra specification language and synthesis environment [1, 26].

The implementation consists of two controller constructions: a

just-in-time controller [28] for Spec
2
, C2, and a bridge controller

B following Alg. 1 or Alg. 3. A just-in-time controller stores an

efficient symbolic representation and computes concrete next states

only when they are required. The separation between C2 and B
allows us to consider the added variables, switch and allowed, only
during the bridge phase. C2 does not use these variables, neither

as game variables, nor as memory variables, and thus the just-in-

time C2 is synthesized from the new specification by the standard

synthesis procedure of Spectra (including the heuristics suggested

in [13]). The added cost of the dynamic-update synthesis is due

solely to the construction of B.
In our implementation, the bridge-controller B minimizes the

number of steps taken until we can activate C2. Specifically, at

each step, from the current state s , given input in, we apply a

binary search on the array B0, . . . ,Bj ,
6
to find a valid output out,

such that (in, out) is of lowest index, i.e., closest as possible to

the target B0. Note that the array is strictly monotonic, i.e., for

all m, the set of transitions represented by Bm is a strict subset

of the set of transitions represented by Bm+1. The search for the

output out takes log(|B |) steps, where |B | denotes the length of

the array. Clearly, log(|B |) is bounded by the number of variables

X ∪Y ∪ {switch, allowed}. In practice, it tends to be much smaller.

6
For efficiency, the actual implementation uses the array of winning regions

Z0, . . . , Z j rather than the array of controllers B0, . . . , Bj . We use the B notation

for the simplicity of the presentation.

Figure 3: Optimized bridge construction. Red arrows denote Spec
1
-

outputs, blue arrows denote Spec
2
-outputs, green states satisfy the

assertion cond. The semi-transparent ellipse B4 is a basic bridge com-
ponent that the optimized bridge did not compute.
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Figure 4: Dynamic-update communication timeline

The implementation is divided between an executor and a syn-

thesizer, which communicate over TCP. It thus supports a truly

remote communication between the machine that runs synthesis

and the machine that executes the controller (e.g., a robot).

Figure 4 shows the timeline of communication during an update.

While the executor is executing C1, the synthesizer receives an

update request for Spec2 and synthesizes C2. Then, the synthesizer

uses Alg. 1 to compute B andW , the bridge and the set of states

from which the system can force an update, and sends them to

the executor. The executor checks whether an update is possible

from its current state usingW and returns the answer to the syn-

thesizer. If the answer is positive, the executor starts executing B
immediately. While B is executed, the executor receives C2 from

the synthesizer, and it starts executing C2 right after the bridge

execution is completed according to Alg. 2.

In the optimized version, where Alg. 1 is replaced by Alg. 3,

the bridge is computed and sent to the executor iteratively until

reaching a Bj from which the system can force an update. Then,

the bridge Bj constructed so far and C2, are executed using Alg. 2.

7 PRELIMINARY EVALUATION
We provide all the specifications, raw results, and means to repro-

duce the experiments described below in supporting materials [2].

7.1 Research Questions
We consider the following research questions.

RQ1. How do update-strategy synthesis and standard GR(1) syn-

thesis compare w.r.t. running times? What is the added cost

of supporting dynamic update?

RQ2. How many steps does it take for the bridge-controller to

complete and activate C2?

RQ3. Does our optimization improve performance, in terms of

(a) the bridge construction running time and (b) number of

steps taken to complete it?

7.2 Corpus and Applied Updates
Our corpus includes three sets of specifications: (1) instances of our

running example, obstacle evasion, which we use to dynamically

update the avoids and always-visit guarantees, (2) instances of a

prioritized arbiter specification, a variant of a benchmark from the

reactive synthesis competition SYNTCOMP [3], which we use to

dynamically update the identity of the prioritized client, and (3)

instances of a job scheduler specification, which we use to dynami-

cally update a subset of the servers that goes down for maintenance.

For each of these sets, we createdmany pairs of specifications where

each pair is an example of an update from the first specification in

the pair to the second specification in the pair. We describe them

below.

Configurations based on the obstacle evasion problem. For
every n = 8, 16, 32, 64 and m = 3, 5, 7, 9, we created 30 pairs of

realizable specifications by adding to the obstacle evasion spec-

ification over an n × n grid: (1) m safety guarantees: randomly

chosenm cells that the robot must avoid; (2)m justice guarantees:

randomly chosenm cells that the robot must visit infinitely often;

and (3) one randomly generated switching condition of the form

cond = (robX=i∧robY=j), i.e., a condition that instructs the robot

to visit a randomly chosen designated cell as part of the update-

strategy (see Def. 3.1). We denote these pairs by pairs(n,m).

Configurations based on the prioritized arbiter problem. The
arbiter (the system) grants requests raised by n clients (the envi-

ronment). It must never grant two requests simultaneously, it can

grant client i’s request only when client i raises a request, and it

must make sure that each request is eventually granted. We assume

that a client lowers a request iff it was just granted. Finally, prioriti-

zation means that one of the clients is prioritized: a pending request

by the prioritized client must be granted before any other client’s

request is granted. We considered variants with n = 70, 80, 90, 100

clients. For each of these, we created 30 pairs of specifications with

n clients, that differ in the identity of the prioritized client. Our

switching condition is the assertion: “no pending request by the

prioritized client". We denote these pairs by pairs(n).

Configurations based on the job scheduler problem. The
scheduler (the system) assigns jobs of different lengths (max length

k) to one of n servers. The scheduler must eventually assign every

incoming job. Once a job is assigned to a server, it cannot be reas-

signed. When a server is assigned a job of length l ≤ k , it works
on it for l consecutive states, after which it is available for new

assignments if any. A new job must not be assigned to a server

that is currently down for maintenance. For every n = 4, 6, 8, 10

and k = 4, 8, 12, 16, we created 30 pairs of realizable specifications,

where updates specify which server should now go down for main-

tenance. Correct update strategies ensure that existing jobs that are

already assigned to a server complete before the server goes down

for maintenance. We denote these pairs by pairs(n,k).
Overall, our corpus includes 1080 configurations: 16 sets of pairs

for the obstacle evasion problem, 4 sets of pairs for the prioritized

arbiter problem, and 16 sets of pairs for the job scheduler problem,

each consisting of 30 configurations.

7.3 Validation
To validate our implementation we defined assertions over the

behavior of the system execution during and after the update: as-

sertions on the bridge phase, an assertion stating that the switching
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state satisfies cond , and an assertion stating that after the bridge,

the execution should match the behavior specified by Spec2.
We verified these assertions automatically using hundreds of

execution logs of dynamic updates over our corpus. For example,

for the obstacle evasion, we programmatically verified that in the

logs, the robot visits the specified cond cell and from then on does

not visit the cells it should avoid according to Spec2.

7.4 Experiment Setups and Results
Our corpus includes pairs of realizable specifications, where the

second specification also includes a switching condition. For each

pair we performed the following experiment. First, we constructed

and executed a controller for the first specification in the pair. Then,

we performed a dynamic-update with the second specification as

the new specification. For each of the dynamic updates performed

we measured the time it took to synthesize the new controller (the

GR(1) just-in-time synthesis cost in Spectra), the time it took to

synthesize the bridge controller (the cost that the dynamic update

task adds), and the number of steps taken by the bridge controller

when the update was executed.

We ran all experiments on an ordinary laptop PC, Intel Core

i7 CPU 1.8GHz, 8GB RAM with Ubuntu 18.04 64-bit OS, Java 13

64Bit, and CUDD 3 compiled for 64Bit. Times we report are median

values of 10 runs, measured by Java in milliseconds. Although the

algorithms we deal with are deterministic, we performed 10 runs

since JVM garbage collection and BDD dynamic-reordering add

variance to running times.

To address RQ1 and RQ3(a), for each set of pairs, we report the

median times we obtained. In Tbl. 1, Tbl. 2, and Tbl. 3, we report

median values for dynamic updates between obstacle evasion spec-

ifications, between prioritized arbiter specifications, and between

job scheduler specifications. For example, for the obstacle evasion

configurations, for a grid of size 32× 32 and number of safeties and

justice guaranteesm = 7 (i.e., for pairs(32, 7)), the median synthesis

time of a new controller is 25.6 sec, themedian bridge controller syn-

thesis time is 23.5 sec, and the median optimized bridge controller

synthesis time is 10.5 sec. Hence, in Tbl. 1, the cell on row ‘32 × 32’

and column ‘7/new controller’ reads 25.6, on row ‘32 × 32/No’ and

column ‘7/bridge’ reads 23.5, and on row ‘32 × 32/Yes’ and column

‘7/bridge’ reads 10.5.

To address RQ2 and RQ3(b), for each performed dynamic update,

wemeasured the actual bridge length as executed, i.e., the number of

steps taken by the bridge controller. For each set of pairs, pairs(n,m),

pairs(n), and pairs(n,k), in Tbl. 1, Tbl. 2, and Tbl. 3 respectively,

we report the median actual length as executed. For example, for

the obstacle evasion configuration pairs(64, 7), the median actual

execution length of the non-optimized bridge is 27 steps, and of the

optimized bridge is 11. Hence, in Tbl. 1, the cell on row ‘64× 64/No’

and column ‘7/length’ reads 27, and on row ‘64×64/Yes’ and column

‘7/length’ reads 11.

To answer RQ1, we observe that the time that the dynamic up-

date adds, i.e., synthesis time of the (non-optimized) bridge, is

approximately of the samemagnitude as the synthesis time of the

new controller. In particular, this means that as long as the syn-

thesis of Spec
2
is feasible, the dynamic update remains feasible

as well.

To answer RQ2, the length of the actual bridges as executed is

small, in particular orders of magnitudes shorter relative to the

worst case length (see the last paragraph of Sect. 4.3). In the

arbiter’s case, bridge length is always 1 since prioritized requests

are answered immediately and thus we are always at most a step

away from a switching condition state.

To answer RQ3, we see that the optimization is efficient and effec-

tive. It reduces the bridge synthesis time and improves the quality

of the update as it shortens its actual length. Moreover, the more

challenging the case, the higher the factor of improvement.

7.5 Threats to Validity
We consider the following threats to the validity of our evaluation.

First, our implementation may have bugs. To mitigate this, we

performed extensive validation (see Sect. 7.3).

Second, running time measurements have variance due to the

random generation of updates, the BDD libraries, and the Java

garbage collector. To mitigate, we performed every experiment

multiple times and report median values (see Sect. 7.4).

Third, running time measurements of our optimized version may

be affected by the time between steps of the controller executor,

which is configured in our testing environment. We used a constant

step time for each set of specifications. Choosing a different step

time could have changed our results. In reality, every system may

have a different step time.

Fourth, we used only three sets of specifications with specific

kinds of updates. We took the specifications from well-known

benchmarks, but we do not know if these specifications and up-

dates are representative of specifications and updates engineers

will apply in practice. That said, we chose the obstacle evasion

specification because it is very similar to the target application

developed by Nokia Bell Labs, and we used hundreds of randomly

generated updates involving changes in safeties and justices on all

three sets of specifications.

Finally, dynamic update requires communication between the

synthesizer and the executor. Our implementation of this communi-

cation is based on TCP. The communication time is strongly affected

by the connection between the synthesizer and the executor. For

example, a synthesizer and an executor that are connected via WiFi

may communicate slower than a synthesizer and an executor that

are running on the same machine. Thus, our results in this regard

are implementation specific. One may obtain different results when

using different means of communication.
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32 × 32

No

4.9

12.8 15

13.9

16.2 12

25.6

23.5 14

41.8

30.3 13

Yes 4.6 9 5.9 7 10.5 6 18.1 8

64 × 64

No

29.2

70.8 28

83.1

110.5 26

122.6

148.7 27

185.2

189.7 25

Yes 18.1 15 33.7 11 61.8 11 71.8 11

Table 1: Obstacle evasion synthesis times (sec), bridge computation times (sec), and actual length as executed

#clients optimized? new controller bridge length

70

No

5.4

6.1 1

Yes 2.9 1

80

No

7.7

12.5 1

Yes 3.6 1

90

No

13.8

21.8 1

Yes 5.5 1

100

No

24.7

34.5 2

Yes 6.3 1

Table 2: Prioritized arbiter synthesis times (sec), bridge computa-
tion times (sec), and actual length as executed

8 RELATEDWORK
Many authors have discussed dynamic adaptation in general and the

dynamic-update problem in the context of synthesized controllers

in particular, see, e.g., [4, 30, 40].

Baresi and Ghezzi [4] present a broad discussion on the moti-

vation for dynamic updates, that is, for changes to occur as the

software is running and while assuring continuous dependability.

The combination of synthesis and dynamic updates goes in this

direction.

Zhang and Cheng [40] present A-LTL, an approach to formally

specify adaptation requirements in temporal logic. They consider

three adaptation variants (one point, guided, and overlap). One

may view our work as implementing a case of guided adaptation,

where the synthesized update-strategy plays the role of the guide.

In another work, the same authors [39] present a model-based

approach to adaptation, separating the adaptation behavior and

non-adaptive behavior specifications, and demonstrated using an

adaptive GSM-oriented audio streaming protocol for a mobile com-

puting application. The two works do not use synthesis for the

construction of an update-strategy.

La Manna et al. [23] studied a notion of “updatable states”. A

state is updateable if the concatenation of some executions that
lead into the state, with any future behavior induced by the new

controller, satisfies the new specification. Their work is specific to

assume-guarantee specifications given as universal Modal Sequence

Diagrams (MSDs) [18]. They describe a related tool in [15] but do

not provide an empirical evaluation or complexity analysis.

More recently, Nahabedian et al. [30] proposed a technique for

dynamic update in the context of event-based controller synthesis.

The work supports updates of labeled transition systems (LTSs)

specified using LTL safeties and fluents [16]. It presents correctness

criteria and a sound and complete solution. It considers various

complexities of updates, e.g., planned updates, and allowing one

to specify the requirements for a transition period where both

the old and the new specification may not hold. It supports the

specification of a transition requirement which is similar to our

optional switching condition. It is implemented as an extension

of the MTSA tool [9] and presents validation through several case

studies.

Our work is distinctive in several ways, most notably (A) in its

applicability and expressiveness - support for the GR(1) fragment

of LTL, including safeties and justices, with a general computation

model that is not specific to event-based specifications; and (B) in

its efficiency and scalability - thanks to the symbolic nature of the

algorithms and implementation. Note that the work in [30] uses

concrete algorithms which in this sense do not scale. Indeed, the

evaluation in [30] presents transition systems of up to 3000 states

and maximum synthesis times of 5 minutes, while our evaluation

uses controllers of up to about 120000 reachable states (from state

spaces of 2
20

to 2
110

states) and synthesis times of up to 3 minutes

but typically much less. Importantly, due to the difference in com-

putation models, our main motivating example of obstacle evasion

while patrolling between locations on a grid (and the other systems

we present in our evaluation), cannot be modeled and solved using

the approach of [30].

Livingston and Murray [22] suggested a dynamic-update tech-

nique for GR(1), restricted to adding or removing justice guarantees.

Their aim is to use the existing controller to reduce the synthesis

time of the modified specification, but their solution also works

at runtime, and thus forms a restricted dynamic-update technique.

Our work is not restricted to updates in justice guarantees, but

covers the complete GR(1), including safeties and justices.

Another restricted dynamic-update technique for GR(1) is pro-

posed by Shi et al. [37], who suggest techniques for several types
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4

No

0.1

0.1 1

0.2

0.7 3

0.3

1.8 4

0.7

4.3 7

Yes 0.1 1 0.4 3 1.2 5 2.1 4

6

No

0.2

0.5 1

1.0

4.7 2

2.0

8.7 3

4.9

19.8 5

Yes 0.4 1 1.6 2 3.1 3 4.6 1

8

No

0.5

1.3 1

2.4

9.3 1

7.5

29.8 1

23.2

76.5 4

Yes 0.8 1 2.5 1 9.0 1 15.6 1

10

No

1.3

2.6 1

5.9

34.8 1

24.6

59.8 2

56.8

226.4 4

Yes 1.6 1 6.9 1 21.7 1 42.7 1

Table 3: Job scheduler synthesis times (sec), bridge computation times (sec), and actual length as executed

of controller synthesis and update in runtime, to overcome unex-

pected accidents caused, e.g., by a malfunction device. The work

does not provide correctness criteria or an evaluation.

Finally, most recently, Finkbeiner et al. [12] present a form of

a live update for controllers synthesized from LTL specifications,

with a different semantics than ours. Moreover, due to the use of

LTL, unlike our use of GR(1), their complexity of checking whether

an update is possible is double exponential.

9 CONCLUSION
We formulated and solved the dynamic-update problem for synthe-

sized GR(1) reactive systems: updating the behavior of an already

running synthesized controller such that it would safely and dynam-

ically, without stopping, start conforming to a modified, up-to-date

specification. We formally defined the dynamic-update problem in

the context of GR(1) and presented a sound and complete solution.

The solution is based on the symbolic computation of an optimal

bridge-controller, which guarantees a shortest switching phase, if

one exists. Finally, we presented a heuristic optimization based on

the early detection of a successful update, which may reduce both

bridge synthesis times and actual bridge steps when executed.

We implemented our ideas in the Spectra synthesizer. Our evalu-

ation shows the efficiency and effectiveness of our work. The work

opens the way for the use of GR(1) synthesis in application domains

where dynamic updates are a necessary requirement.

We suggest the following future work directions. First, we con-

sider developing means to deal with the case of an unrealizable

dynamic update, i.e., where switching cannot be forced.
7
Currently,

our technique is limited to detecting unrealizable dynamic updates,

but not to further deal with them. When the system cannot force

a strategy update, it is still possible that an update can be done

with the cooperation of the environment. That is, there may exist

a sequence of inputs by the environment that enables a strategy

switch. This calls for synthesizing a cooperative bridge-controller.

Second, we hope to complete the case study of deploying our

implementation in Nokia Bell Labs system and report on our expe-

rience in a follow-up paper.

7
Note that this is different than the case where the new specification is unrealizable by

itself, which may be addressed in various ways, e.g., using cores, counter-strategies,

or repairs [8, 21, 27].
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