
Semantically Configurable Analysis of
Scenario-Based Specifications

Barak Cohen and Shahar Maoz

School of Computer Science, Tel Aviv University, Israel

Abstract. Scenarios, represented using variants of sequence diagrams,
are popular means to specify systems requirements. Live sequence charts
(LSC), is a formal and expressive scenario-based specification language,
which has been extensively studied over the last decade. Careful reading
of the LSC literature, however, reveals many variations and ambiguities
in the semantics of LSC, as it is used by different authors in different
contexts. Moreover, different works define their semantics of LSC using
different means. This variability, in both language features and means of
semantics definition, creates a challenge for researchers and tool devel-
opers.

In this paper we address this challenge by investigating semantically con-
figurable analysis. We define and formalize the variability in the seman-
tics of LSC using a feature model and develop an analysis technique that
can be instantiated to comply with each of its legal configurations. Thus,
the analysis is semantically configured and its results change accord-
ing to the semantics induced by the selected feature configuration. The
work is implemented and demonstrated using examples. It advances the
state-of-the-art in the area of scenario-based specifications and provides
an example for a formal and automated approach to handling semantic
variability in modeling languages.

“. . . the world don’t move to the beat of just one drum. . . ”
Diff’rent Strokes (1978)

1 Introduction

Scenarios, represented using variants of sequence diagrams, are popular means
to specify systems requirements. A scenario tells a ‘short story’ of interaction be-
tween system and environment entities. Live sequence charts (LSC), originally
presented by Damm and Harel [4], is a formal and expressive scenario-based
specification language. LSC has been extensively studied over the last decade in
the context of execution and synthesis (e.g., [9,16,23,25,31,33,40]), in the con-
text of consistency checking and formal verification (e.g., [6,11,21,26]), speci-
fication mining and testing (e.g., [27]), expressive power and standardization
(e.g., [5,12,13,22,30,41]). Moreover, several tools which support various analy-
ses that involve the LSC language have been developed by different research

groups, including, e.g, PlayGo [14], the Modal Transition System Analyzer [7],
and ScenarioTools [10,39].

Careful reading of the LSC literature, however, reveals many variations and
ambiguities in the semantics of LSC, as it is used by different authors in different
contexts, for different purposes and in different tools. Moreover, different works
define their semantics of LSC using different means, e.g., by transformation to
temporal logic formulas, by describing an execution mechanism (play-out), by
translation into various types of automata, etc. This variability, in both language
features and means of semantics definition, creates a challenge for researchers
and tool developers.

In this paper we address this challenge by investigating semantically con-
figurable analysis of LSC. First, we define and formalize the variability in the
semantics of LSC, as it is found in the literature, using a feature model: each con-
figuration that the feature model permits, induces a different semantics mapping
(over the same domain). Second, we develop a parametrized analysis technique
that can be instantiated to comply with every legal configuration of the feature
model. Thus, the resulting analysis, e.g., verification or synthesis, is semanti-
cally configured and its results change according to the semantics induced by
the selected feature configuration.

There are several advantages to using a feature model to describe a language’s
semantic variability. First, the feature model provides a means to formally struc-
ture the various semantic choices; this supports human comprehension of the
semantics, allows comparison of different variants, and, significantly, enables
the parsing required in order to support an automatically configurable analy-
sis. Second, the use of a feature model provides a formal means to define logical
dependencies between the semantic choices, e.g., mutual exclusion, implication
etc. This is indeed necessary, because not all theoretically possible combinations
induce well-defined and useful semantics that are found in the literature.

To present the semantics of LSC in our work, we chose a single, uniform
semantic domain — traces of events — and a uniform formalism — alternating
one pair Streett automata (see Appendix A and, e.g., [8]), which is expressive
enough to faithfully support the representation of all variants we have found in
the literature. This uniform representation enables human comprehension and
comparison between variants, and serves as a basis for building semantically
configurable automated analysis tools.

Our feature model for the semantics of LSC consists of 19 features. One
feature, for example, relates to whether the LSC should be interpreted universally
or existentially. Another feature relates to the question of whether the chart’s
semantics is tolerant or strict with regard to partial-order violations by events
that appear in it. One feature relates to the semantics of pre-charts in existential
charts, a set of features differentiates between invariant, and iterative modes of
interpretation, a set of features relates to the use of environment assumptions,
and another set of features differentiates between true and interleaving modes
of concurrency. Each feature is formally defined as part of the LSC semantics

LSC Transformation
(implemented in ATL)

Existing analyses tool
(e.g., GOAL, Uppaal)

LSC
configuration

Generated
automaton

selected by the engineer, in
compliance with the LSC
semantics feature model

Fig. 1. The architecture of our solution to semantically configurable analysis of LSC

definition. The feature model organizes the different features so that each of its
configurations induces a specific overall semantics.

The semantic mapping itself is realized using a model-to-model (M2M) trans-
formation. The input for the transformation consists of (1) an LSC and (2) a
valid configuration of the feature model. The output is an automaton, which can
be used as input for downstream analysis tools. An overview of the architecture
of our solution is shown in Fig. 1.

Our work is fully automated and implemented in a prototype Eclipse plug-
in, where one can edit an LSC, select a semantic configuration, and generate
an automaton corresponding to the LSC semantics according to the chosen con-
figuration. For LSC editing we use components from PlayGo [14]. For feature
model definitions and implementation of feature selection we use components
from FeatureIDE [19]. The M2M transformation is implemented in ATL [18].

The remainder of the paper is organized as follows. Sect. 2 discusses related
work. Sect. 3 provides an overview and an example. Sect. 4 describes the LSC
language and the feature model of its semantics. Sect. 5 presents our technique
for semantically configurable analysis. Sect. 6 presents the implementation and
a discussion. Sect. 7 concludes.

2 Related Work

The question of how to deal with semantic variability in a modeling language has
been investigated before. A series of works by Atlee et al., e.g., [29,37,38], used
template semantics to configure the semantics of state machines, and demon-
strated configured translations of state machines into SMV and into Java. Dif-
ferent from these works, we use a feature model to model semantic variability.
Moreover, these works relate to state machine models while our present work
focuses on scenario-based models.

Cengarle et al. [2] have presented a taxonomy of variability mechanisms in
language definitions syntax and semantics, and demonstrated the use of feature
diagrams to model possible variants. The present work builds on these previous
ideas while focusing on semantic variability, specifically, semantic mapping vari-
ability (rather than syntactic variability) and on its application to semantically

configurable analysis, specifically demonstrated and implemented in the context
of live sequence charts.

A recent survey [36] has explored the many meanings of UML 2 sequence
diagrams. Indeed, we share similar concerns about the challenges set by the ex-
istence of many different semantics for sequence diagrams. The survey, however,
does not formalize the various semantics mathematically and under a single, uni-
form formalism as a semantic domain. Thus, unlike our work, it cannot provide
a basis for a semantically configurable automated analysis. Moreover, the survey
does not focus on LSC and ignores many LSC-related works (e.g., [25,41]), whose
semantics we do cover in this paper.

Many previous works provide various analyses for LSC, e.g., formal verifica-
tion, specification mining, and synthesis (e.g., [9,25,27,34,41]). To the best of our
knowledge, none of the works in the LSC literature supports variability-based
semantically configurable analysis.

Most recently, the second listed author et al. [32] presented semantically con-
figurable consistency checking of class and object diagrams. The work motivates
the use of feature models to support semantically configurable analysis. It uses a
feature model to specify variations in the semantics of CDs and ODs, and a pa-
rameterized translation of CDs and ODs to Alloy, which is expressive enough to
support all the considered variants. This work has inspired us to apply a similar
solution to address the challenge of variability in the semantics of LSC.

3 Example and Overview

We use a simple example as an overview of our work. The description is partial
and semi-formal. We refer back to this example later in the paper.

We consider a single small LSC, related to the vending machine specification
presented in [33,34]. The LSC OnHeatRequest (Fig. 2, left) consists of one en-
vironment lifeline (heater) and two system lifelines, representing the system’s
panel and thermometer. The minimal event of the LSC is a cold heat message
that is sent from the panel to the heater. It is followed by two hot messages,
with no particular order between them: (1) the panel’s own lockPanel message,
and (2) the heater’s reachMax message to the thermometer.

We define the semantics of an LSC by translation to an automaton. The
language accepted by the automaton consists of the runs that satisfy the LSC.

The construction of the automaton consists of a common part and a variable
part. The common part (marked in black in Fig. 2, right) includes the states
(one for each LSC cut) and the transitions induced by the unwinding of the
LSC’s partial order. The variable part, marked in several colors according to
the corresponding semantic features, consists of (1) additional transitions, (2)
a reject state, (3) a quantification on the initial state, and (4) an acceptance
condition.

For example, for a universal semantics, the red transitions and reject state
are added on top of the common construction. For the choice between a strict
and a tolerant interpretation, the purple or the orange transitions are added.

loc
kP

an
el

heat

reachM
ax

lo
ck

P
an

el

lockPanel
reachMax q0

q1

q3q2

qreject

q4

heat

reachMax

lockPanel

{lockPanel, reachMax}

reachM
ax

lockPanel
reachMax
heat

lockPanel

reachMax

heat

lockPanel
reachMax
heat

lockPanel
reachMax
heat

{lo
ck

P
an

el
, r

ea
ch

M
ax

}

LSC OnHeatRequest

panel thermometer

heater

heat()

lockPanel()

reachMax()

Fig. 2. An example LSC and a sketch of a corresponding automaton. The automaton
sketch is color-coded based on the LSC semantics feature model: the common parts
are black while the parts corresponding to selected semantic features are marked in
different colors, one color per feature.

To support true concurrency rather than interleaving semantics, the green tran-
sitions are added. The choice of whether to consider environment assumptions
changes the acceptance condition (not shown in Fig. 2).

Characterizing and formalizing the required variability, and showing how it
is implemented in a single, configurable analysis solution, are the challenges we
address in this paper.

4 LSC Semantics Variability

We start off with an overview of LSC’s common syntax and semantics. We then
describe the feature model that organizes LSC’s semantic variability.

4.1 Live sequence charts common syntax and semantics

A live sequence chart consists of a set of lifelines and messages, depicted in the
concrete syntax using vertical lines and arrows between them. Message send
and receive events are placed in the intersection of messages and lifelines. On
each lifeline, events are fully ordered from top to bottom. Events appearing on
different lifelines are not ordered, except that a receive event cannot happen

ActivationModeLSC
 semantics

Strict

Concurrency

Invariant

Iterative

EnvAssump

EnvAssumpIntegrated

FD lscSem

Interleaving

TrueConcurrency

Tolerant

Quantification

Existential

Universal

ExistCondPrechart

UnivCondPrechart

Sequencing

EnvAssumpSeparated AssumptionLsc

Fig. 3. The LSC semantics feature model, presented using a feature diagram

before its corresponding send event. Thus, the LSC syntax induces a partial
order over events. This partial order is common to all LSC variants found in the
literature (and in fact also to all message sequence charts and UML sequence
diagrams variants).

Another common syntactic feature of all LSC variants is message tempera-
ture, which can be either hot or cold. In the concrete syntax, the temperature is
reflected by the message’s color, red or blue.

These syntax and semantics are common to all LSC variants found in the
literature. Next we discuss the semantic variants found in the literature and the
feature model we use to formalize and structure them.

4.2 The LSC semantic variability feature model

A feature model describes a structured set of features and their logical depen-
dencies [1,3]. Feature models are commonly used in the area of software product
lines. They may be visually represented using feature diagrams, which are basi-
cally and-or trees, extended with textual cross-tree logical constraints. Here we
use a feature model to formalize variability in the semantics of LSC. The model
includes several cross-tree logical constrains. In the feature diagrams we use the
standard notation: for mandatory features, a line ending with a filled circle; for
alternative features of which exactly one must be selected (xor), an empty slice
covering the lines leading to the different alternatives.

Our feature model consists of 19 features, as shown in the feature diagram
in Fig. 3. Roughly, a valid feature configuration of this model specifies whether
the semantics is universal or existential (with the kind of pre-chart specified),

invariant or iterative, of true concurrency or interleaving, using strict or toler-
ant sequencing, and whether the semantics includes environment assumptions.
Some of these features have sub-features. Each of the features and sub-features
represents a semantic choice used in one or more works from the LSC literature,
as we detail next.

The Universal vs. Existential semantic choice was first presented in [4]
and appeared in almost all works (although many works support only the uni-
versal variant). An existential LSC specifies an interaction example and requires
that at least one system run exhibits the events appearing in it (in compliance
with the partial order specified by the chart). A universal LSC specifies a rule
that all system runs are expected to satisfy. A run satisfies a universal LSC iff
each time the LSC is activated its hot enabled messages eventually occur, or an
enabled cold message is violated.

A pre-chart appeared already in [4]. Many works use an LSC variant with
pre-chart, but not all (e.g., [9,33]). When a pre-chart is used in an existential
LSC, two variants are found: one variant, introduced in [4] and called in our fea-
ture model existential conditional pre-chart (ExistCondPrechart), states that
there should be at least one system run in which if the pre-chart is traversed suc-
cessfully, then the main chart is fulfilled as well. Another variant with a stronger
interpretation requires that whenever the pre-chart is fulfilled there is at least
one execution from that point on that satisfies the main chart. This semantic
variant is defined in [41] and called in our feature model universal conditional
pre-chart (UnivCondPrechart)

The model of concurrency assumed by an LSC may vary. Almost all works
use an Interleaving interpretation, where no two events happen at the same
point in time. Some works, e.g., [4,21], however, do allow true concurrency
(TrueConcurrency).

The kind of sequencing is another distinction found in the literature. Two
sequencing kinds are considered: Strict and Tolerant. According to the strict
interpretation, events that appear in the chart but are not currently enabled
cause a violation. According to the tolerant interpretation, these events do not
cause a violation. In all variants, the chart’s sequencing ignores events not ap-
pearing in the chart. Almost all works use strict sequencing. Tolerant sequencing
is formalized and investigated in [15].

The mode of activation is another variation found in the literature. We con-
sider two activation modes from the literature: Invariant and Iterative. In
invariant activation mode, every occurrence of a minimal event activates the
chart. In iterative mode, a chart is not activated if it is currently active (so at
most one instance of the chart may be active at each point in time). The invari-
ant mode is used in many works, e.g., [4,6,12,21,41]. The iterative mode is used
in other works, e.g., [10,21,25].

Finally, the use of liveness environment assumptions is another variation
point in the LSC literature. Some works make a distinction between environ-
ment and system lifelines, which is reflected in the LSC semantics; when the
environment violates its assumptions, the system is no longer required to fulfill

its guarantees. An integrated variant, which allows to specify environment as-
sumptions and system guarantees in a single LSC, is presented in [33] and used
in [14]. A variant where assumptions must appear in separate LSCs is presented
in [9,21] and used in [10]. However, while most works do make a syntactic distinc-
tion between environment and system lifelines, many of them, e.g., [12,16,41],
do not support liveness environment assumptions.

Cross-tree constraints. To complete the feature model, we add to the feature
diagram cross-tree logical constraints that define dependencies between the dif-
ferent features, for us, the semantic choices, e.g., mutual exclusion, implication
etc. This is indeed necessary, because, as we have found, not all theoretically
possible combinations (feature configurations) induce well-defined and useful se-
mantics (which appeared in the literature). Specifically, we add the following:

EnvAssump implies Universal (1)

not (UnivCondPrechart and ExistCondPrechart) (2)

We add constraint 1 because the provisional behavior specified by an existen-
tial semantics is too weak to be useful as an assumption on the environment’s
behavior (“The quantification is always universal, because assumptions express
universal constraints on the behavior of the environment”, [20, p. 196]). Indeed,
in the literature all works that support environment assumptions (e.g., [9,33])
support only universal LSCs. We add constraint 2 because a pre-chart in an ex-
istential LSC may have either a universal conditional semantics or an existential
conditional semantics, but not both.

Overall, our feature model contains 19 features, 5 of which are core features,
i.e., features that are included in all configurations. The model has 56 valid
configurations. The complete feature model we have defined is available in [28],
in formats compliant with S.P.L.O.T [35] and with FeatureIDE [19], to allow
others to inspect it and use it.

5 Semantically Configurable Analysis

We start with a short overview of the target formalism we use as the semantic
domain for LSC. We then describe the model-to-model transformation we have
defined to support semantically configurable analysis.

5.1 Alternating one pair Streett automata

The key to the semantically configurable analysis is a transformation to a single,
uniform formalism, in our case, an alternating one pair Streett automaton [8].

Roughly, an alternating automaton’s transition function maps a state and
an alphabet symbol to a positive Boolean expression over states. It thus allows
expressing both non-determinism (disjunction) and concurrency (conjunction).
Streett acceptance condition consists of a set of pairs of bad and good sets

of states; a run is accepted iff for each pair, if it visits the bad set infinitely
often it also visits the good set infinitely often. A formal definition appears in
Appendix A.

For our purposes of representing the semantics of all LSC variants found
in the literature, a simpler automaton is sufficient. Specifically, we need only
one pair (F,E) ⊆ Q2 of bad and good sets of states for the Streett acceptance
condition, and we can limit quantification to the automaton’s initial state (and
in the case of pre-chart to at most one more state).

In addition to an LSC, the input for the transformation includes one valid
configuration of the LSC semantics feature model described in Sect. 4. We now
describe the transformation as it is implemented in ATL [18]. We use the LSC
presented earlier in Sect. 3 as a running example.

5.2 Overview of the transformation

The ATL transformation uses three meta models: (1) for LSC (input), (2) for
a semantics configuration (input), and (3) for an alternating one pair Streett
automaton (output). As the transformation is quite complex we use many ATL
helpers, to define required data structures and functions.

Most importantly, the transformation uses two kinds of rules: common
rules, which are invoked based on the LSC input model only and apply to
all variants (e.g., construct the unwinding structure based on the partial order),
and feature specific rules, which are invoked based on the input feature model
configuration (rule per feature, see details below).

The notions of unwinding structure, cut and the events it induce, etc. are
common to all LSC variants, see, e.g., [12]. For lack of space we do not repeat
their definition here and do not show the common transformation rules. The
complete transformation is available from [28]. Here we focus only on the feature
specific rules.

5.3 Handling semantic variability: feature specific rules

Handling variability is technically realized using feature specific rules. Below we
show how some of the features are handled and demonstrate the application of
the rules to the example LSC shown in Sect. 3.
Universal vs. Existential. List. 1.1 shows two rules. The rule universal (lines
1-13) matches the feature Universal in the configuration Conf. It stores the
universal quantification enumerator in a global variable and if a pre-chart exists
it connects its unwinding structure to the main chart’s unwinding structure. In
addition, it generates transitions that represent the LSC’s successful traversal.
Next, it creates a reject state, turns it into a sink vertex and adds it to the set F
of the acceptance condition. Finally, it sets the set E of the acceptance condition
to include all cold states. The rule is applied iff the input configuration includes
the feature Universal.

For example, in Fig. 2, the resulting contribution of the rule universal

is marked in red: it consists of the transitions going from states q2 and q3 to

1 rule universal {

2 from f : Conf!Universal

3 do {

4 self.initialStateQuant <- #Universal;

5 if (self.isPrechartSet)

6 self.joinCharts ();

7 self.generateBackTransitions ();

8 self.generateRejectState ();

9 self.selfTrans(self.mappedSymbols , self.rejectState);

10 self.addToFstates(self.rejectState);

11 for (state in self.unwindingStructureStates) {

12 if (self.isCold(state))

13 self.addToEstates(state);}}}

14 rule existential {

15 from f : Conf!Existential

16 do {

17 self.initialStateQuant <- #Existential;

18 self.ignoreTemperature <- true;

19 self.connectAcceptingSinkState ();}}

Listing 1.1. ATL rules to support existential and universal semantics

state q0 as well as the additional state qreject and its self-transition. With this
construction, a run that starts (heat, reachMax, lockPanel) returns to the initial
state q0, ready for another activation of the LSC.

The rule existential (lines 14-19) matches the feature Existential in the
configuration Conf. It stores the existential quantification enumerator in a global
variable and instructs the transformation to ignore message temperature. It is
applied iff the input configuration includes the feature Existential.

As an example, in Fig. 2, the resulting contribution of the rule existential

is marked in blue: it consists of the transitions going from states q2 and q3 to
state q4. After applying this rule, a run that starts (heat, reachMax, lockPanel)
reaches the state q4 and stays there forever.

Invariant vs. Iterative. List. 1.2 shows two rules. The rule invariant (List. 1.2
lines 1-9) matches the feature Invariant in the configuration Conf. It creates a
self-transition (loop) on the initial state, labeled with all used alphabet symbols,
and sets the quantification on the transitions outgoing the initial state to the
quantification stored by the universal / existential rules. If a pre-chart is
present, it sets the quantification on transitions outgoing the initial state of the
main chart in a similiar manner. It is applied iff the input configuration includes
the feature Invariant.

Fig. 2 demonstrates the contribution of the rule invariant: a self-transition
on q0 and a quantification on q0’s outgoing transitions (marked in light blue).
For instance, in combination with universal strict semantics, a run that starts
(heat, heat) branches out to three states: q0, q1 and qreject, representing three
copies of the LSC.

1 rule invariant {

2 from f: Conf!Invariant

3 do {

4 self.selfTransMappedSymbols(self.initialState);

5 self.initialState.quantification <-

6 self.initialStateQuant;

7 if (self.isPrechartSet)

8 self.prechartToMainState.quantification <-

9 self.prechartToMainStateQuant ;}}

10 rule iterative {

11 from f: Conf!Iterative

12 do {

13 self.selfTransUnboundedSymbols(self.initialState);}}

Listing 1.2. ATL rules to support invariant and iterative semantics

The rule iterative (List. 1.2 lines 10-13) matches the feature Iterative

in the configuration Conf. It creates self-transitions on the initial state, for all
symbols that do not yet appear on any outgoing transition from the initial state.
It is applied iff the input configuration includes the feature Iterative.

Strict vs. Tolerant. List. 1.3 shows two rules. The rule strict (lines 1-7)
matches the feature Strict in the configuration Conf. It iterates over the states
in the unwinding structure and for each state creates outgoing transitions either
to the initial state or to the reject state, in correspondence to the messages
causing violations in it. It is applied iff the input configuration includes the
feature Strict.

Fig. 2 shows the contribution of the rule strict in the context of univer-
sal semantics. It includes three transitions going from q1, q2 and q3 to qreject
(marked in purple). For instance, all the runs that start (heat, heat) visit qreject
and stay there forever.

The rule tolerant (lines 8-12) matches the feature Tolerant in the config-
uration Conf. It iterates over the states in the unwinding structure and for each
state generates a self-transition that carryies all the symbols that are included
in any outgoing transition. It is applied iff the input configuration includes the
feature Tolerant.

The contribution of the rule tolerant is depicted in Fig. 2: three self-
transitions on the states q1, q2 and q3 (marked in orange). For instance, in this
case the infinite word (heat, heat, reachMax, lockPanel)

ω
is accepted by both

in universal and existential semantics.

Environment assumptions. List. 1.4 shows two rules. The rule assumptionLsc
(lines 1-5) matches the feature AssumptionLsc in the configuration Conf. It sets
the set E of the acceptance condition to include all states. It is applied iff the
input configuration includes the feature AssumptionLsc.

The rule envAssumpIntegrated (lines 6-16) matches the feature EnvAssump-
Integrated in the configuration Conf. It sets the set F of the acceptance con-
dition to include all cold-environment-hot-system states and the set E of the

1 rule strict {

2 from f: Conf!Strict

3 do {

4 for (state in self.unwindingStructureStates) {

5 if (state <> self.initialState and

6 state <> self.acceptingSinkState)

7 self.violatingTrans(state);}}}

8 rule tolerant {

9 from f: Conf!Tolerant

10 do {

11 for (state in self.unwindingStructureStates) {

12 self.addUnboundedSymbolsToSelfTrans(state);}}}

Listing 1.3. ATL rules to support tolerant and strict semantics

1 rule assumptionLSC {

2 from f: Conf!assumptionLSC

3 do {

4 for (state in Automaton!State.allInstances ()) {

5 self.E_states <- self.E_states.including(state);}}}

6 rule envAssumpIntegrated {

7 from f: Conf!envAssumpIntegrated

8 do {

9 self.F_states <- Set{}; self.E_states <- Set{};

10 if (not self.rejectState.oclIsUndefined ())

11 self.F_states <- Set{self.rejectState };

12 for (state in self.unwindingStructureStates) {

13 if (self.isCEHS(self.matchingCut(state)))

14 self.F_states <- self.F_states.including(state);

15 else if (self.isCS(self.matchingCut(state)))

16 self.E_states <- self.E_states.including(state);}}}

Listing 1.4. ATL rules to support assumptions

acceptance condition to include all cold-system states. It is applied iff the input
configuration includes the feature EnvAssumpIntegrated. In the example shown
in Fig. 2, in the context of universal semantics and in the case where the fea-
ture EnvAssump is not selected, the acceptance condition is set to F = Q (the
complete set of states) and E = {q0, q4}. In the case where the features EnvAs-

sump and EnvAssumpIntegrated are selected, the acceptance condition is set to
F = {q3, qreject} and E = {q0, q2, q4}.

6 Implementation, Validation, and Discussion

Implementation. We have created a prototype implementation of our work,
packaged as an Eclipse plug-in. For the representation of the LSC semantics
feature model and the selection of valid configurations we use components from
FeatureIDE [19]. For editing LSCs we use the UI and APIs of PlayGo [14]. The

M2M transformation is implemented in ATL [18]. The prototype plug-in together
with several examples is available from [28].
Validation. We validated our solution as follows. First, we implemented tests
that iterate and apply all possible configurations of the feature model to a set of
non-trivial LSCs, and check various properties of the resulting automata (e.g.,
the existence of a specific self-transition etc.). The tests are available from [28].

Second, we used the output of our solution as input for GOAL [42] (a Graph-
ical Tool for ω-Automata and Logics), and thus executed several usage scenarios,
including (1) verifying an automaton against a property LSC, (2) checking the
consistency of an LSC specification, while applying several, different semantic
configurations. Details of some of these examples of usage scenarios are available
in Appendix B.
Choice of variability modeling language. Our choice of feature diagrams as
a variability modeling language was motivated by its wide use in the literature,
its tool support (we use FeatureIDE [19]) and its expressive power, which is good
enough for our purposes. Considering other means to model variability in our
context, e.g., the Common Variability Language (CVL) [17], is outside the scope
of this paper.
Choice of target formalism. Our choice of alternating one pair Streett au-
tomata as the target formalism for the semantics definition was motivated by its
expressive power, which covers all variants found in the literature. Alternatively,
one may use a Buchi acceptance condition, however, we consider this to be less
intuitive for the variants involving environment assumptions.
Choice of transformation language. Our choice of ATL for the implementa-
tion of the model-to-model transformation was motivated by its tool and stan-
dard support. It allowed us to create a rather high-level readable code that
reflects the one-to-one mapping between features and rules.

7 Conclusion

In this paper we have investigated the idea of semantically configurable analysis
in the context of live sequence charts. We formalized semantic variability in LSC
using a feature model and presented a semantically configurable fully automated
analysis solution based on a transformation to an alternating one pair Streett au-
tomaton, capable of expressing all semantic variants found in the literature. The
work was implemented in an Eclipse plug-in and demonstrated with examples.

We consider the following possible future work. First, extending our work to
support additional LSC language features, e.g., conditions and various interac-
tion fragments (alternatives, loops). The semantics of some of these language
features does not seem to vary in the literature, but they are used extensively
and are thus necessary for a more comprehensive solution. Second, integrating
our semantically configurable analysis with existing tools that are using LSC,
such as PlayGo [14] and ScenarioTools [10,39].

The paper continues our previous work on semantically configurable analy-
sis [32] and is part of our larger project on investigating formal and automated
ways to handling variability in modeling languages syntax and semantics.

References

1. D. S. Batory. Feature models, grammars, and propositional formulas. In SPLC,
volume 3714 of LNCS, pages 7–20. Springer, 2005.

2. M. V. Cengarle, H. Grönniger, and B. Rumpe. Variability within modeling language
definitions. In MoDELS, volume 5795 of LNCS, pages 670–684. Springer, 2009.

3. K. Czarnecki and U. Eisenecker. Generative Programming Methods, Tools, and
Applications. Addison-Wesley, 2000.

4. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design, 19(1):45–80, 2001.

5. W. Damm, T. Toben, and B. Westphal. On the expressive power of live sequence
charts. In Program Analysis and Compilation, volume 4444 of LNCS, pages 225–
246. Springer, 2006.

6. W. Damm and B. Westphal. Live and let die: LSC-based verification of UML-
models. In FMCO, volume 2852 of LNCS, pages 99–135. Springer, 2002.

7. D. Fischbein, N. D’Ippolito, G. Sibay, and S. Uchitel. Modal Transition System
Analyzer (MTSA). http://sourceforge.net/projects/mtsa/. Accessed 9/13.

8. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.

9. J. Greenyer, C. Brenner, M. Cordy, P. Heymans, and E. Gressi. Incrementally
synthesizing controllers from scenario-based product line specifications. In ES-
EC/SIGSOFT FSE, pages 433–443. ACM, 2013.

10. J. Greenyer, C. Brenner, and V. P. L. Manna. The ScenarioTools Play-Out of Modal
Sequence Diagram Specifications with Environment Assumptions. ECEASST, 58,
2013.

11. J. Greenyer, A. M. Sharifloo, M. Cordy, and P. Heymans. Efficient consistency
checking of scenario-based product-line specifications. In RE, pages 161–170. IEEE,
2012.

12. D. Harel and S. Maoz. Assert and negate revisited: Modal semantics for UML
sequence diagrams. Software and Systems Modeling, 7(2):237–252, 2008.

13. D. Harel, S. Maoz, and I. Segall. Some results on the expressive power and com-
plexity of LSCs. In Pillars of Computer Science, volume 4800 of LNCS, pages
351–366. Springer, 2008.

14. D. Harel, S. Maoz, S. Szekely, and D. Barkan. PlayGo: towards a comprehensive
tool for scenario based programming. In ASE, pages 359–360. ACM, 2010.

15. D. Harel and R. Marelly. Come, let’s play - scenario-based programming using
LSCs and the play-engine. Springer, 2003.

16. D. Harel and I. Segall. Synthesis from scenario-based specifications. J. Comput.
Syst. Sci., 78(3):970–980, 2012.

17. Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen. Adding
standardized variability to domain specific languages. In SPLC, pages 139–148.
IEEE Computer Society, 2008.

18. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation
tool. Sci. Comput. Program., 72(1-2):31–39, 2008.

19. C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel.
FeatureIDE: A tool framework for feature-oriented software development. In ICSE,
pages 611–614, 2009.

20. J. Klose. Live sequence charts: a graphical formalism for the specification of com-
munication behavior. PhD thesis, University of Oldenburg, 2003.

21. J. Klose, T. Toben, B. Westphal, and H. Wittke. Check it out: On the efficient
formal verification of live sequence charts. In CAV, volume 4144 of LNCS, pages
219–233. Springer, 2006.

22. H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps. Temporal logic for
scenario-based specifications. In TACAS, volume 3440 of LNCS, pages 445–460.
Springer, 2005.

23. H. Kugler, C. Plock, and A. Pnueli. Synthesizing reactive systems from LSC re-
quirements using the play-engine. In OOPSLA Companion, pages 801–802. ACM,
2007.

24. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Trans. Comput. Log., 2(3):408–429, 2001.

25. K. G. Larsen, S. Li, B. Nielsen, and S. Pusinskas. Scenario-based analysis and
synthesis of real-time systems using Uppaal. In DATE, pages 447–452. IEEE,
2010.

26. S. Li, S. Balaguer, A. David, K. G. Larsen, B. Nielsen, and S. Pusinskas. Scenario-
based verification of real-time systems using Uppaal. Formal Methods in System
Design, 37(2-3):200–264, 2010.

27. D. Lo and S. Maoz. Scenario-based and value-based specification mining: better
together. Autom. Softw. Eng., 19(4):423–458, 2012.

28. LSC semantic variability supporting materials. http://smlab.cs.tau.ac.il/lscvar/.
29. Y. Lu, J. M. Atlee, N. A. Day, and J. Niu. Mapping template semantics to SMV.

In ASE, pages 320–325. IEEE Computer Society, 2004.
30. S. Maoz. Polymorphic scenario-based specification models: semantics and applica-

tions. Software and Systems Modeling, 11(3):327–345, 2012.
31. S. Maoz, D. Harel, and A. Kleinbort. A compiler for multimodal scenarios: Trans-

forming LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol., 20(4):18, 2011.
32. S. Maoz, J. O. Ringert, and B. Rumpe. Semantically configurable consistency

analysis for class and object diagrams. In MoDELS, volume 6981 of LNCS, pages
153–167. Springer, 2011.

33. S. Maoz and Y. Sa’ar. Assume-guarantee scenarios: Semantics and synthesis. In
MoDELS, volume 7590 of LNCS, pages 335–351. Springer, 2012.

34. S. Maoz and Y. Sa’ar. Counter play-out: executing unrealizable scenario-based
specifications. In ICSE, pages 242–251. IEEE / ACM, 2013.

35. M. Mendonça, M. Branco, and D. D. Cowan. S.P.L.O.T.: software product lines
online tools. In OOPSLA Companion, pages 761–762, 2009.

36. Z. Micskei and H. Waeselynck. The many meanings of UML 2 Sequence Diagrams:
a survey. Software and Systems Modeling (SoSyM), 10(4):489–514, 2011.

37. J. Niu, J. M. Atlee, and N. A. Day. Template semantics for model-based notations.
IEEE Trans. Software Eng., 29(10):866–882, 2003.

38. A. Prout, J. M. Atlee, N. A. Day, and P. Shaker. Code generation for a family
of executable modelling notations. Software and Systems Modeling, 11(2):251–272,
2012.

39. ScenarioTools. http://www.scenariotools.org/. Accessed 9/13.
40. G. E. Sibay, V. A. Braberman, S. Uchitel, and J. Kramer. Synthesizing modal

transition systems from triggered scenarios. IEEE Trans. Software Eng., 39(7):975–
1001, 2013.

41. G. E. Sibay, S. Uchitel, and V. A. Braberman. Existential live sequence charts
revisited. In ICSE, pages 41–50. ACM, 2008.

42. Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan. GOAL: A Graph-
ical Tool for Manipulating Büchi Automata and Temporal Formulae. In TACAS,
volume 4424 of LNCS, pages 466–471. Springer, 2007.

A Alternating Streett Automaton

The definitions of alternating and Streett automata are well known and appear
for example in [8]. We use here a combined definition, specific to our needs. The
notation is adopted from [24].

For a given set X, let B+(X) be the set of positive Boolean formulas over
X (i.e., Boolean formulas built from elements in X using ∧ and ∨), where we
also allow the formulas true and false. For Y ⊆ X, we say that Y satisfies a
formula θ ∈ B+(X) iff the truth assignment that assigns true to the members
of Y and assigns false to the members of X \ Y satisfies θ.

An alternating Streett automaton on infinite words is a tupleA = 〈Σ,Q, qin, δ, S〉
where Σ is an input alphabet, Q is a finite set of states, qin ∈ Q is an initial
state, δ : Q×Σ → B+(Q) is a transition function, and S = {(Fi, Ei) | 1 ≤ i ≤ l}
is a family of pairs of sets of states serving as a Streett acceptance structure.

A run of an alternating automaton is a tree r : Tr → Q for some Tr ⊆ N∗ .
Formally, a tree is a (finite or infinite) nonempty prefix-closed set T ⊆ N∗. The
elements of T are called nodes, and the empty word ε is the root of T . For every
x ∈ T , the nodes x · c ∈ T where c ∈ N are the children of x. A node with no
children is a leaf . We refer to the length |x| of x as its level in the tree. A
path π of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is
a leaf, or there exists a unique c ∈ N such that x · c ∈ π. Given a finite set Θ, a
Θ-labeled tree is a pair 〈T, V 〉 where T is a tree and V : T → Θ maps each
node of T to a letter in Θ. A run of A on an infinite word w = σ0 · σ1 · · · is a
Q-labeled tree 〈Tr, r〉 such that the following hold:

– r(ε) = qin.
– Let x ∈ Tr with r(x) = q and δ(q, σ|x|) = θ. There is a (possibly empty)

set R = {q1, . . . , qk} such that R satisfies θ and for all 1 ≤ c ≤ k, we have
x · c ∈ Tr and r(x · c) = qc.

For example, if δ(qin, σ0) = (q1 ∨ q2) ∧ (q3 ∨ q4), then possible runs of A on
w have a root labeled qin, have one node in level 1 labeled q1 or q2, and have
another node in level 1 labeled q3 or q4. Note that if θ = true, then x need
not have children. This is the reason why Tr may have leaves. Also, since there
exists no set S as required for θ = false, we cannot have a run that takes a
transition with θ = false.

Let inf (π) be the set of states that r visits infinitely often. A path π is
accepting iff it satisfies Streett’s acceptance condition on the structure S, i.e.,
for all 1 ≤ i ≤ l if inf (π) ∩ Fi 6= ∅ then inf (π) ∩ Ei 6= ∅. A run 〈Tr, r〉
is accepting if all its infinite paths, which are labeled by words in Qω , are
accepting. A word w is accepted by the automaton A if there exists an accepting
run on it.

B Examples of analysis usage scenarios

We show three examples of semantically configurable analysis of LSCs, as sup-
ported by our prototype implementation.

B.1 LSC verification with strict vs. tolerant semantics

Fig. 4 shows a property LSC LSC_A and a controller C1. A controller satisfies
a property LSC iff the language defined by the controller is contained in the
language defined by the LSC. Does C1 satisfy LSC_A? The answer depends on
the choice of semantics.

o1 o2 o3

LSC_A

Fig. 4. Property LSC LSC_A and controller C1

Consider two semantic configurations:
confs = {universal, interleaving, iterative, strict}
conft = {universal, interleaving, iterative, tolerant}

The two configurations are legal configurations of the LSC semantics feature
model (we use a minimal representation, which omits core and derived features).
Note that confs and conft differ only in the choice between the two kinds of
sequencing, strict and tolerant.

Given LSC_A and the two configurations, we used our prototype implementa-
tion to generate the two automata shown in Fig. 5 (we set the tool to generate
these automata using Buchi acceptance condition rather than Streett acceptance
condition, in order to be able to preform analysis later on in GOAL [42]). The two
automata are similar. However, they differ in the labeling on the self-transitions
and the reachability of the reject state (S5).

Fig. 5. Two automata, generated by our tool for LSC_A and the two semantic configu-
rations confs (left) and conft (right)

We then used GOAL to check whether the controller C1 satisfies LSC_A un-
der confs and under conft (by checking language containment). Indeed, GOAL
reported that the language accepted by C1 is contained in the language de-
fined by the automaton that was generated with conft . In contrast, GOAL
reported that the language accepted by C1 is not contained in the language
defined by the automaton that was generated with confs and gave the word
(msg1,msg2,msg1)(msg3,msg1,msg2,msg1)ω as a counterexample.

B.2 LSC verification with existential vs. universal semantics

Consider the property LSC LSC_B and the controller C2, shown in Fig. 6, left
and top right respectively. Does C2 satisfy LSC_B? Here too, the answer depends
on the choice of semantics.

Consider two semantic configurations:
confe = {existential, interleaving, iterative, strict}
confu = {universal, interleaving, iterative, strict}

Note that confu and confe differ only in the choice between the two kinds of
quantification, universal and existential.

Given LSC_B and the two configurations, we used our prototype implemen-
tation to generate the two automata shown in Fig. 6: Ae (middle right) and Au

(bottom right). The two automata are similar. However, while in Ae the initial
state is not accepting and the accepting sink state (S2) is reachable, in Au the
initial state is accepting and the accepting sink state (S2) is unreachable. In

o1 o2

LSC_B

Ae

Au

C2

Fig. 6. Property LSC LSC_B (left), controller C2 (top right), and two automata, Ae and
Au, generated by our tool for LSC_B and the two semantic configurations confe (middle
right) and confu (bottom right)

addition, Au contains a reject state (S3) and a transition that goes back to the
initial state, while Ae contains neither.

We then used GOAL to check whether the controller C2 satisfies LSC_B un-
der confe and under confu (by checking language containment). Indeed, GOAL
reported that the language accepted by C2 is contained in the language de-
fined by the automaton Ae that was generated with confe . In contrast, GOAL
reported that the language accepted by C2 is not contained in the language de-
fined by the automaton Au that was generated with confu and gave the word
(msg1,msg2,msg1,msg1)(msg1,msg1)ω as a counterexample.

B.3 LSC consistency with existential vs. universal semantics

Fig. 7 shows three property LSCs: LSC_C, LSC_D and LSC_E. A set of LSCs is
consistent iff the intersection of the languages defined by all LSCs is not empty.
Is the set {LSC_C, LSC_D, LSC_E} consistent? Again, the answer depends on the
choice of semantics.

Consider two semantic configurations:
confe = {existential, interleaving, iterative, strict}
confu = {universal, interleaving, iterative, strict}

o1 o1
o1 o2o2o2

LSC_C LSC_D LSC_E

Fig. 7. Three property LSCs: LSC_C, LSC_D, and LSC_E

Note that confe and confu differ only in the choice between the two kinds of
quantification, universal and existential.

Given LSC_E and the two configurations, we used our prototype implemen-
tation to generate the two automata shown in Fig. 8: Ae (left) and Au (right).
The two automata are different. For instance, while in Ae the initial state is not
accepting and the accepting sink state (S3) is reachable, in Au the initial state
is accepting and the accepting sink state (S3) is unreachable. In addition, Au

contains a reject state (S4) while Ae does not.

Suppose that confLSC C = {existential, interleaving, iterative, strict} and
confLSC D = {existential, interleaving, iterative, strict} are the semantic con-
figuration for LSC_C and LSC_D respectively. Again, given LSC_C, LSC_D, and the

Ae
Au

Fig. 8. Two automata, Ae and Au, generated by our tool for LSC_A and the two
semantic configurations confe (left) and confu (right)

ALSC_C

ALSC_D

Fig. 9. An automaton, ALSC C , generated by our tool for LSC_C and the semantic con-
figurations confLSC C (top left); an automaton, ALSC D, generated by our tool for LSC_D
and the semantic configurations confLSC D (bottom left); and the automaton, gener-
ated by GOAL, that accepts the intersection of the languages defined by LSC_C, LSC_D,
and LSC_E in the case where the semantics of LSC_E is set to confe

two configurations, we used our prototype implementation to generate the two
automata shown in Fig. 9: ALSC C (top left) and ALSC D (bottom left).

We then used GOAL to check whether the set {LSC_C, LSC_D, LSC_E} is con-
sistent in the case where the semantics of LSC_E is set to confe , and in the case
where the semantics of LSC_E is set to confu . To do so, we asked GOAL to find
the intersection of the languages defined by ALSC C , ALSC D, and Ae, as well
as the intersection of the languages defined by ALSC C , ALSC D and Au.

Indeed, GOAL reported that L(ALSC C) ∩L(ALSC D) ∩L(Au) is empty. In
contrast, GOAL reported that L(ALSC C) ∩ L(ALSC D) ∩ L(Ae) is not empty
and gave the word (msg1,msg3,msg2,msg1,msg2,msg3)(msg3,msg3)ω as a
witness. GOAL generated the automaton that accepts L(ALSC C)∩L(ALSC D)∩
L(Ae). See Fig. 9, right.

	Semantically Configurable Analysis of Scenario-Based Specifications

