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Abstract—Dynamic specification mining extracts candidate
specifications from logs of execution traces. Existing algorithms
differ in the kinds of traces they take as input and in the
kinds of candidate specification they present as output. One
challenge common to all approaches relates to the faithfulness of
the mining results: how can we be confident that the extracted
specifications faithfully characterize the program we investigate?
Since producing and analyzing traces is costly, how would we
know we have seen enough traces? And, how would we know we
have not wasted resources and seen too many of them?

In this paper we address these important questions by present-
ing a novel, black box, probabilistic framework based on a notion
of log completeness, and by applying it to three different well-
known specification mining algorithms from the literature: k-
Tails, Synoptic, and mining of scenario-based triggers and effects.
Extensive evaluation over 24 models taken from 9 different
sources shows the soundness, generalizability, and usefulness of
the framework and its contribution to the state-of-the-art in
dynamic specification mining.

I. INTRODUCTION

Much literature has been published on dynamic specification
mining, which extracts candidate specifications from logs
of program execution traces. Different approaches suggest
different algorithms, which differ in the kinds of traces they
take as input and in the kinds of candidate specification they
present as output (in terms of content, expressive power, and
format). Example approaches include [5], [13]–[15], [17], [18],
[21], [22], [26], [27], [29]–[31], [37], [38], [41], [42].

One challenge common to all approaches relates to the
faithfulness of the mining results: how can we be confident
that the extracted specifications faithfully characterize the
program we investigate? As the mined specifications may be
used for comprehension, test generation, and verification, their
faithfulness to the program we investigate is important. Yet,
producing and analyzing traces is costly, so how would we
know we have seen enough of them? And, how would we
know we have not wasted resources and seen too many of
them?

In this paper we address these important questions by
presenting a novel, black box, probabilistic framework based
on a notion of log completeness. We consider logs of execution
traces extracted from a running system under investigation.
Intuitively, a log is complete with regard to a specific system
and a mining algorithm, if adding any new system trace to the
log will not change the output of the algorithm. In dynamic
specification mining, the system and its full set of system
traces is unknown. Therefore, given a log of system traces,
we estimate the probability that the log is complete. We say
that this estimation is the log’s confidence.

A log’s confidence may be practically used as follows. If not
many traces are available, one can compute the confidence of
the available log in order to estimate the expected faithfulness
of the mining results. A low confidence of, say, 0.2, hints
that the mining results may be far off from characterizing
the behavior of the system under investigation. A very high
confidence of, say, 0.95, hints that the mining results are
probably very close to correctly characterize the behavior of
the system under investigation. If producing and analyzing
more traces is possible but costly, one can set a high confidence
threshold of, say, 0.85, and stop adding new traces when the
threshold is reached.

We apply the new framework to three different well-known
dynamic specification mining algorithms from the literature:
k-Tails [6], Synoptic [5], and mining of scenario-based triggers
and effects [25]. Inspired by InvariMint [4], we represent each
algorithm using a set of log properties. For k-Tails, we use
a property describing the existence of possible sequences of
length k in the log. For Synoptic, we use four different prop-
erties, corresponding to the k-Tails property with k = 2 and
to the three temporal invariant properties used by the Synoptic
algorithm. For triggers and effects, we use a single three-
valued property representing the possible relation between the
trigger and all of the possible effects (or vice versa). The
framework assumes that mining randomly and independently
samples traces from the log. For all three algorithms, we
compute the confidence of a set of traces, by estimating the
probability that it manifests the complete properties that any
log of the system under investigation can manifest. Each log
property requires a different probabilistic estimation.

An interesting feature of our notion of completeness is that it
is relative to a system under investigation and a specific mining
algorithm: a log may be complete with regard to one algorithm
and incomplete with regard to another. Yet, computing a log’s
confidence with regard to a specific algorithm does not require
running the specification mining algorithm itself.

An important feature of our notion of confidence is its non-
monotonicity: adding traces to a log does not guarantee an
increase in confidence and may even decrease it (still, a log’s
confidence doesn’t depend on the order of traces in it). We
discuss this apparently counter-intuitive feature in Sect. VII.

Finally, we present an extensive evaluation of our work,
including the results of experiments with 24 models of real-
world systems taken from publicly available previously pub-
lished works. The results show that for all three algorithms, the
probability that a log is complete can be estimated efficiently
and be effectively applied, with high reliability, to improve



the use of the dynamic specification mining algorithm and the
confidence one may have in its results.

In recent preliminary work [8] (ASE’14 New Ideas Track)
we have presented a notion of confidence computation for k-
Tails, termed k-confidence, with preliminary evaluation of its
effectiveness. Our present paper extends this previous work
significantly, and makes the following contributions:
• The presentation of a general framework for log confi-

dence and its application, beyond k-Tails, to two addi-
tional well-known specification mining algorithms;

• An extensive evaluation over 24 real-world models, which
provides strong evidence for the correctness and effective-
ness of the confidence computations;

• An implementation available for reproduction and exten-
sion for additional specification mining algorithms.

Sect. II presents examples for the use of log confidence, for
Synoptic and for mining triggers and effects. Sect. III presents
the formal foundations of the log completeness framework
and Sect. IV presents its application to the three dynamic
specification mining algorithms. Sect. V presents an example
confidence computation. Sect. VI presents the evaluation,
Sect. VII discusses design decisions and limitations, Sect. VIII
discusses related work, and Sect. IX concludes.

II. EXAMPLES

We use small examples to demonstrate the usage of log
confidence. All traces and models discussed in the examples
below are available in [1]. The presentation of the examples
is semi-formal, for illustrative purposes.

A. Example I

In [5], the authors use an example of a shopping cart to
demonstrate how Synoptic is able to reveal a bug where the
user can use an invalid coupon to reduce the price. To reveal
this bug, the problematic behavior must appear in the traces.

Consider an engineer having a log of 34 traces of the
shopping cart system, adapted from the example traces of [5].
Fig. 1 shows the model suggested by Synoptic for this log (the
dashed transition invalid-coupon to reduce-price is
not part of the model suggested by Synoptic for this 34 traces
log). The model does not include the bug so at this stage, the
user may wrongly conclude that the shopping cart system has
no bugs. How would she know if more traces are needed?

Indeed, adding 15 more traces, and feeding the resulting log
of 49 traces to Synoptic, results in a revised model as shown
in Fig. 1 (including the dashed transition), which reveals the
invalid coupon bug.

Our tool computes a confidence of 0.59 to the first log
and of 0.98 to the second log. This confidence is essentially
an estimation for the probability that the log is complete,
computed solely based on the traces themselves. If the user
has set a minimum confidence threshold of 0.95 (which is a
very safe threshold according to our evaluation), she would not
have stopped analyzing traces too soon, i.e., before finding the
bug.

Fig. 1: Shopping cart model as mined by Synoptic from the
log of 34 traces (without the dashed transition) and from the
log of 49 traces (including the dashed transition)

Should she continue to analyze more traces? Given the
computed confidence of 0.98, the probability that additional
traces will reveal new behaviors is very small. Indeed in our
example, an extension of the log with 22 additional traces (all
new traces, not duplicates of any of the traces seen before)
resulted in a slightly higher confidence of 0.99 but in the same
model as was suggested by Synoptic for the 49 traces. Thus,
by stopping the analysis when confidence reached 0.95 the
engineer saved the resources required in order to produce and
analyze the additional traces, yet did not lose any information.

B. Example II

In mining scenario-based triggers and effects [25], the
engineer provides a trigger scenario (a sequence of events)
as input, and receives a set of candidate effects (sequences of
events) as output, with the following semantics: whenever the
trigger scenario occurs in the traces (in the specified events
order but possibly with other events interleaved), eventually
each of the candidate effects occurs too (again, in the specified
events order but possibly with other events interleaved).

In [17], the authors use an example set of execution traces
from CrossFTP, an open-source FTP server [11]. The full data
set, available from [16], contains 54 traces with an average
trace length of 34, over an alphabet of 50 events.

Consider an engineer investigating the behavior of the
CrossFTP server, looking for scenario-based effects to the
trigger consisting of a call to open a new connection and a
call to transfer data (used in CrossFTP both in the context of
upload and in the context of download):



ConnectionManagerImpl.newConnection(...)
RequestHandler.transfer(...).

When the engineer executed the mining with this trigger,
on a sub log of randomly selected 24 traces from the full
log, more than 12 unique candidate effects were reported. For
example, one of these candidate effects was the scenario:
ConnectionManagerImpl.closeConnection(...)
ConnectionManagerImpl.dispose(...).

However, none of these candidate effects truly characterizes
the behavior of the CrossFTP. When executing mining of
triggers and effects with the same trigger on the full log of 54
traces, no effect is reported, since a few traces include multiple
calls to the transfer(...) method with no occurrence
of an effect between them. Indeed, in CrossFTP, no scenario
exists which always occurs in this log after the given trigger.

Our tool computes a confidence of 0.2 to the 24 traces
log, and a confidence of 0.98 to the 54 traces log. Again,
this confidence is essentially an estimation for the probability
that the log is complete, computed solely based on the traces
themselves. Indeed, mining scenario-based triggers and effects
from the log with the low confidence produced results that
do not characterize the true behavior of the system under
investigation. In other words, the results of mining from a
log that has a low confidence should not be trusted.

C. Running Example

We take the java.util.zip.ZipOutputStream
model from [20] as a small running example for this paper.
The model consists of 3 states over an alphabet of 5 events. We
consider a randomly generated log for this model, consisting
of 7 traces. See Fig. 2.

III. LOG COMPLETENESS FRAMEWORK

A. Basic Definitions

A trace over an alphabet Σ is a finite word
σ = 〈e1, e2, . . . , em〉 where e1, . . . , em ∈ Σ. For j ≥ 1 we
use σ(j) to denote the jth element in σ.

Let M be a model over an alphabet Σ. We use T (M) ⊆ Σ∗

to denote all traces accepted by the model M . A log of M ,
l ⊆ T (M) is a finite set of traces from T (M). We denote the
set of all possible logs of M by L(M).

The basic definition underlying log completeness is the
log-property LP , consisting of a pair of functions. The first
function, LPtr, maps every trace σ and a sequence of events
es to a value in some domain Dtr. Intuitively, LPtr assigns a
value to the relation between the property LP and the trace.
The second function, LPlog, maps subsets of Dtr to Dlog; it
aggregates the trace level results to the log level.

Example 1. If Dtr = Dlog = {0, 1}, LPtr may be used to
represent whether a property holds in the trace, and LPlog

may represent whether it holds in an entire log. An example
property is an invariant of the form ‘a always precedes b’.

Definition 1 (log-property). A log-property
LP = 〈LPtr, LPlog〉 is a pair of functions LPtr : Σ∗×Σi →
Dtr and LPlog : P(Dtr)→ Dlog.

We say that a log l ∈ L(M) is complete with regard to
a log-property LP if the information one may extract about
the property from the log l is equal to the information one
may extract about it from any log that includes l (and thus
specifically from all the traces in T (M)). Formally:

Definition 2 (LP-log-completeness). A log l ∈ L(M) is
complete with regard to a log-property LP = 〈LPtr, LPlog〉
iff ∀l′ ∈ L(M) s.t. l ⊆ l′, ∀es ∈ Σi

LPlog({LPtr(σ, es)|σ ∈ l}) = LPlog({LPtr(σ, es)|σ ∈ l′}).

We now lift the completeness definition from properties to
algorithms. A specification mining algorithm A accepts a log
l ∈ L(M) as input and outputs a candidate model A(l) = M ′.

We represent an algorithm A by a set of log properties
LP (A) = {LP 1, LP 2, . . . , LP k}. We say that a log l is
complete with regard to an algorithm A iff l is complete with
regard to each of the log-properties of A. Formally:

Definition 3 (A-log-completeness). A log l ∈ L(M) is
complete with regard to an algorithm A iff ∀LP ∈ LP (A), l
is complete with regard to LP .

Note that to make the framework useful, one should define
the set of log-properties LP (A) such that, if l ∈ L(M) is
complete with regard to A, adding any trace σ ∈ T (M)
to l will not affect the candidate model A computes for l
(indeed this is part of our evaluation, see Sect. VI-B). Also
note that log completeness is defined relative to an algorithm
(specifically a set of log-properties). The same log may be
complete with regard to one algorithm and incomplete with
regard to another algorithm.

B. Estimating Log Completeness

Given an algorithm A and a log l ∈ L(M), our goal is
to estimate the probability that l is complete with regard to
A, i.e., to compute l’s confidence. To do this, we compute
l’s confidence with regard to the LP s in LP (A) and take the
minimum (intuitively, choosing the minimum is a conservative
choice).

For each LP ∈ LP (A), we define a random variable
YLP (σ) over Ω = T (M), which maps a trace to its property
results. Formally:

YLP (σ) : YLP (σ)[es] = LPtr(σ, es).

Example 2. We denote the invariant property ‘a always
precedes b’ mentioned above by LP←. For the trace tr2

of our running example in Fig. 2 and the sequences
〈init, closeEntry〉 and 〈putNextEntry, closeEntry〉, we
have
YLP←(tr2)[〈init, closeEntry〉] = 1 and
YLP←(tr2)[〈putNextEntry, closeEntry〉] = 0, because the
first holds in the trace while the second does not.

For y ∈ D|Σ|
i

tr we denote the probability that YLP equals y
by πLP (y):

πLP (y) = P[YLP = y].



tr1:init,closeEntry,close,close
tr2:init,closeEntry,putNextEntry,closeEntry,putNextEntry,closeEntry,close,close
tr3:init,putNextEntry,write,putNextEntry,putNextEntry,closeEntry,close
tr4:init,putNextEntry,write,close
tr5:init,close
tr6:init,putNextEntry,write,close,close
tr7:init,closeEntry,putNextEntry,write,closeEntry,closeEntry,putNextEntry,close

Fig. 2: The running example model of java.util.zip.ZipOutputStream from [20], and 7 randomly generated traces
used to demonstrate confidence computation.

Example 3. To continue our example above, where Dtr =
Dlog = {0, 1}, for the invariant property ‘a always precedes
b’, we have i = 2 and so y can be viewed as a Σ × Σ
2-dimensional array (a matrix) over {0, 1}. In our running
example the alphabet size is |Σ| = 5 and so for this property
we will use a 5× 5 matrix (see later in Table I).

πLP (y) is the probability that in a random trace from T (M)
we get the values of LP as they are encoded in y. It is
determined by M but M is considered unknown.

We consider all traces from a log l to be samples from
YLP . We assume that traces are randomly and indepen-
dently chosen from T (M). If |l| = n we denote them
by YLP1, YLP2, . . . , YLPn. These are independent, identically
distributed random variables, versions of YLP . Another ran-
dom variable we define is Y n

LP , which aggregates all these
samples to the property values for the entire log:

Y n
LP : Y n

LP [es] = LPlog({YLPi[es])|1 ≤ i ≤ n})

We now define the true, but unknown, log-property values,
fLP (π), in order to later compute the probability that Y n

LP is
equal to it:

fLP (π) : fLP (π)[es] = LPlog({y[es]|π(y) > 0}).

Example 4. For the running example model in Fig. 2,
the log property ‘always precedes’ LP←, and the se-
quence 〈putNextEntry, closeEntry〉, since there are traces
in T (M) where the invariant is not violated (e.g., tr3) and oth-
ers where it is violated (e.g., tr2), the property does not hold in
the log and so fLP←(π)[〈putNextEntry, closeEntry〉] = 0.

Note that M determines fLP (π). We can now write Def. 3
using the above notation as follows: a log l is complete with
regard to an algorithm A iff

∀LP ∈ LP (A).Y n
LP = fLP (π).

Recall that our goal is to estimate the probability that l is
complete with regard to A. Using the notation defined above,
what we are looking to estimate is P[Y n

LP = fLP (π)].
The above represents l’s confidence with regard to a single

log-property LP . We define the confidence of a log l with
regard to an algorithm A, to be the minimum of l’s confidence
with regard to all LP s in LP (A). Formally:

Definition 4 (A-log-confidence). The confidence of a log l ∈
L(M) with regard to an algorithm A is
min{P[Y n

LP = fLP (π)]|LP ∈ LP (A)}.

IV. LOG COMPLETENESS APPLIED

We now present the application of the framework to three
different previously published dynamic specification mining
algorithms: k-Tails [6], Synoptic [5], and mining of scenario-
based triggers and effects [25]. For each algorithm we define
the relevant log-properties LP (A) and show the estimation of
P[Y n

LP = fLP (π)] for each LP ∈ LP (A).

A. k-Tails

k-Tails [6] is a dynamic specification mining algorithm
based on merging states whose future k states are identical.
It has been used in several variants in many recent works,
e.g., [3], [9], [24], [28], [29], [39]. Below we reformulate the
computations of [8] using the framework defined above.

1) Log Properties: To apply the log completeness frame-
work to k-Tails we define a single log-property, LPBk ,
for the existential property ‘k-directly-follows’. Roughly, the
property ‘k-directly follows’ for a sequence of events es =
〈e1, e2, . . . , ek〉 holds in a trace iff the sequence appears
somewhere in the trace.

The intuition behind the use of this property is as follows.
Consider a model produced by k-Tails for a log, and a new
trace whose all subtraces of length k+1 appear in the produced
model. Applying k-Tails to a new log that consists of the
original log and the new trace, produces the same model. The
proof for this claim, albeit using a different formulation, can
be found in [4].

The definitions of LPBk
tr and LPBk

log below follow the
semantics of ‘k-directly-follows’ as an existential property.
Formally, we use Dtr = Dlog = {0, 1} and define:
LP (Ak-Tails) = {LPBk} where

LPBk
tr (σ, 〈e1, e2, . . . , ek〉) =

{
1 ∃j

∧
1≤m≤k

σ(j +m− 1) = em

0 otherwise

LPBk

log (S) =

{
1 1 ∈ S
0 otherwise

2) Computing Log Confidence: The probability that an
existential property does not hold in T (M) but appears in one
of the traces is zero. Thus, we only need to consider the other
case, where the sequence of length k does not appear in the
traces (Y n[es] = 0) but is possible in the model (f [es] = 1).
Formally:1

P[Y n = f ] = 1− P[∃es.Y n[es] = 0 ∧ f [es] = 1]
≥ 1− Σ

es
P[Y n[es] = 0 ∧ f [es] = 1]

1Since they are fixed, we omit the specific LP and π from the formulas
in this section



P[Y n[es] = 0 ∧ f [es] = 1] =

{
P[Y n[es] = 0] f [es] = 1
0 f [es] = 0

=

{ ∏
1≤i≤n

P[Yi[es] = 0] f [es] = 1

0 f [es] = 0

We use qes to denote the probability that the existential
property for es holds on a random trace from T (M), i.e., that
the sequence 〈e1, e2, . . . , ek〉 appears somewhere in the trace.
When f [es] = 1 we have qes > 0 and

∏
1≤i≤n

P[Yi[es] = 0] =

(1− qes)n.
Since qes is unknown, we estimate it using the average of

the n random variables Yi

q̂es =

n∑
i=1

Yi[es]

n

and so overall, we have

P[Y n = f ] ≥ 1−
∑

{es|q̂es>0}

(1− q̂es)n.

B. Synoptic

Synoptic [5] is a dynamic specification mining algorithm
based on three temporal invariants of length 2 and a process
of refinement/coarsening using counter-example-guided-abs-
traction-refinement (CEGAR) and a variant of k-Tails.

1) Log Properties: To apply the framework to Synoptic
we define four log-properties, for three invariant properties
and for one existential property. The three invariant properties
are ‘always followed by’ (denoted →), ‘always precedes’
(denoted ←), and ‘never followed by’ (denoted 9). The exis-
tential property is ‘2-directly-follows’ (denoted B2). Formally:
LP (ASynoptic) = {LP→, LP←, LP9, LPB2}, and all four
Synoptic’s log-properties use Dtr = Dlog = {0, 1}.

The intuition behind the use of these properties is as follows.
First, the three invariants are mined by Synoptic and then used
during the refinement process; the final model produced by
Synoptic is guaranteed to satisfy all three invariants. Second,
the existential ‘2-directly-follows’ property corresponds to
the initial step in the Synoptic algorithm, which builds a
permissive model that accepts all traces. Formal correctness
proof for the selection of these properties appear in [4].

The definition of LP→ = 〈LP→tr , LP→log〉 is based on its
semantics. LP→tr takes two events as input and outputs 1 iff
every occurrence of the first is followed by an occurrence
of the second. LP→log(S) takes the result of applying LP→tr
to all traces and outputs 1 iff all traces satisfy the invariant.
Formally:

LP→tr (σ, 〈e1, e2〉) =

{
1 ∀kσ(k) = e1 ⇒ ∃m>kσ(m) = e2

0 otherwise

LP→log(S) =

{
1 0 /∈ S
0 otherwise

The definition of the two other invariants is similar: LP←tr
takes two events as input and outputs 1 iff every occurrence
of the second is preceded by an occurrence of the first; LP9

tr

takes two events as input and outputs 1 iff no occurrence of
the first is followed by an occurrence of the second. Formally:

LP←tr (σ, 〈e1, e2〉) =

{
1 ∀kσ(k) = e2 ⇒ ∃m<kσ(m) = e1

0 otherwise

LP9
tr (σ, 〈e1, e2〉) =

{
1 ∀kσ(k) = e1 ⇒ ¬∃m>kσ(m) = e2

0 otherwise
All three log-properties are invariants, so they have the same

LPlog function, that is LP→log = LP←log = LP9
log.

Finally, the log-property LPB2 , relating to the existen-
tial property ‘2-directly-follows’, is a special case of the
‘k-directly follows’ property defined above for k-Tails (see
Sect. IV-A1), for k = 2.

2) Computing Log Confidence: We estimate the probability
of log completeness with regard to Synoptic by taking the
minimum of the probabilities of log completeness for each
property alone.

The three invariant properties. We use es to denote the
sequence 〈e1, e2〉.

For the three invariant properties, the computation is the
same. The probability that the invariant holds in T (M) but is
violated in one of the traces is zero. Thus, we only need to
consider the other case, where the invariant holds in all traces
that we have seen (Y n[es] = 1) but not in T (M) (f [es] = 0).
Formally:

P[Y n = f ] = 1− P[∃es.Y n[es] = 1 ∧ f [es] = 0]

≥ 1− Σ
es
P[Y n[es] = 1 ∧ f [es] = 0]

P[Y n[es] = 1 ∧ f [es] = 0] =

{
P[Y n[es] = 1] f [es] = 0
0 f [es] = 1

=

{ ∏
1≤i≤n

P[Yi[es] = 1] f [es] = 0

0 f [es] = 1

We use qes to denote the probability that the invariant holds
for es on a random trace from T (M). When f [es] = 0 we
have qes < 1 and

∏
1≤i≤n

P[Yi[es] = 1] = qnes.

Since qes is unknown we estimate it using the average of
the n random variables Yi

q̂es =

n∑
i=1

Yi[es]

n
(1)

and overall, for each of the three invariant properties we have

P[Y n = f ] ≥ 1−
∑

{es|q̂es<1}

(q̂es)
n. (2)

The existential property. Computing confidence for the exis-
tential property ‘2-directly-follows’ is again a special case of
the computation of ‘k-directly follows’ we have shown above
in Sect. IV-A2, so we do not repeat it here.

Finally, we consider the log’s confidence with regard to the
Synoptic algorithm as a whole to be the minimum of the four
probabilities of the log completeness properties.



C. Mining Scenario-Based Triggers & Effects

Mining scenario-based triggers and effects (mining t/e)
was presented in [25]. Roughly, given a trigger scenario (a
sequence of events), the miner looks for all effect scenarios
(sequences of events) such that for each, whenever the trigger
occurs in a trace (in the specified events order but possibly
with other events interleaved), eventually the effect occurs in
this trace (in the specified events order but possibly with other
events interleaved). Below we use the notation from [25].

Given a trigger scenario tg and an effect scenario es,
pos(tg++es) is the set of all positive witnesses of the combined
scenario tg++es, i.e., all cases where an occurrence of tg is
eventually followed by an occurrence of es; and neg(tg++es)
is the set of all negative witnesses of the combined scenario
tg++es, i.e., all cases where an occurrence of tg is not followed
by an occurrence of es. Formal definitions appear in [25].

We consider the case where the input consists of a trigger
and the miner looks for effects. The other case is symmetric.

1) Log Properties: We define a single log-property, cor-
responding to the following: given a trigger and a candidate
effect, is it true that whenever the trigger occurs, eventually
the effect occurs too? We denote this trigger/effect property
by t/e: LP (ATrigger/Effect) = {LP t/e} .

The intuition behind the use of this property is that it
is equivalent to the property which the algorithm looks for:
log completeness with regard to this property entails that the
mining algorithm results are indeed correct and complete with
regard to the true model.

The definition of LP t/e = 〈LP t/e
tr , LP

t/e
log 〉 is based on its

semantics. LP t/e
tr takes a trace and a candidate effect as input

and outputs 1 (true) iff the trace has at least one positive
witness and no negative witnesses for the combined trigger
effect, 0 (false) iff the trace has at least one negative witness
for the combined trigger effect, and -1 (unknown) if the trigger
never occurs in the trace. The domains for the log-property
{LP t/e} are three valued: Dtr = Dlog = {1, 0,−1}.
LP

t/e
log (S) takes the result of applying LP

t/e
tr to all traces

and outputs 1 iff it returned 1 for at least one trace and
returned 0 for no trace. Formally:

LP
t/e
tr (σ, es) =

 1 |pos(tg++es)| > 0 ∧ |neg(tg++es)| = 0
0 |neg(tg++es)| > 0
−1 otherwise

LP
t/e
log (S) =

 1 1 ∈ S ∧ 0 /∈ S
0 0 ∈ S
−1 otherwise (S = {−1})

2) Computing Log Confidence: We use es to denote the
sequence 〈e1, e2, . . .〉; the length of the effect we are looking
for is unbounded.

The computation considers the possible cases where the
log and the model do not agree. First, the case where the
trigger does not occur in the log (Y n[es] = −1) although
it is possible in T (M) (f [es] 6= −1). Second, the case
where the trigger occurs in the log with no negative witnesses
(Y n[es] = 1) although the combined trigger effect is not
true T (M) (f [es] = 0). (Other cases are impossible, e.g., the

case where we see a negative witness in the log although the
combined trigger effect is true in T (M)). Formally:

P[Y n = f ] = 1− (P[∃esY n[es] 6= f [es]])

≥ 1−
(
Σ
es
P[Y n[es] = −1 ∧ f [es] 6= −1]

+ Σ
es
P[Y n[es] = 1 ∧ f [es] = 0]

)
We compute each of the two probabilities above as follows.

We use qtg++es and qtg to denote the probability that a random
trace from T (M) has only positive witnesses of tg++es and tg
respectively. For the first probability, we have

P[Y n[es] = −1 ∧ f [es] 6= −1] =

{
P[Y n[es] = −1] f [es] 6= −1
0 otherwise

=

{
P[Y n[es] = −1] qtg > 0
0 otherwise

When f [es] 6= −1 we have qtg > 0 because tg is possible
in the model. In this case, by definition of LP t/e

log (S), we have
the probability that the trigger will not occur in any of the n
traces:

P[Y n[es] = −1] = (1− qtg)n.

For the second probability, we have

P[Y n[es] = 1 ∧ f [es] = 0] =

{
P[Y n[es] = 1] f [es] = 0
0 otherwise

When f [es] = 0 we have qtg 6= qtg++es because tg++es does
not hold in the model. In this case, by definition of LP t/e

log (S),
we have to consider the case where in the n traces we have
seen the trigger at least once and we have not seen any negative
witnesses:

P[Y n[es] = 1] = (1− (1− qtg)n)× (1− (qtg − qtg++es))
n

Finally, since qtg and qtg++es are unknown we estimate them
using the n random variables Yi

q̂tg =
∑

Yi[es]∈{1,0}

1

n
, q̂tg++es =

∑
Yi[es]=1

1

n

and so overall we have

P[Y n = f ] ≥ 1−
(

Σ
q̂tg>0

(1− q̂tg)n

+ Σ
q̂tg 6=q̂tg++es

(1− (1− q̂tg)n)× (1− (q̂tg − q̂tg++es))
n
)
.

D. Implementation

We have implemented the computation of log confidence
for the three dynamic specification algorithms. For each of
the three algorithms, the implementation gets as input a log
(a set of traces) and algorithm specific parameters (none for
Synoptic, k for k-Tails, and the trigger or effect sequence for
scenario-based trigger and effect). Note that the confidence
computation does not need to run the mining algorithm.

Given a log l and an algorithm A, computing the log’s
confidence starts with separately computing its confidence for
each of the log-properties in LP (A). For each log-property



event close closeEntry init putNextEntry write
close - 0.43 (-0.00) 0.00 (-0.00) 0.29 (-0.00) 0.43 (-0.00)
closeEntry 0.57 (-0.02) - 0.00 (-0.00) 0.57 (-0.02) 0.57 (-0.02)
init 1.00 (-0.00) 1.00 (-0.00) - 1.00 (-0.00) 1.00 (-0.00)
putNextEntry 0.71 (-0.10) 0.57 (-0.02) 0.00 (-0.00) - 1.00 (-0.00)
write 0.57 (-0.02) 0.57 (-0.02) 0.00 (-0.00) 0.29 (-0.00) -

TABLE I: Example log confidence computation with regard to the invariant property ‘always precedes’ (LP←), for the log of
7 traces shown in Fig. 2. The computed confidence for this property is 0.78. See Sect. V.

LP , for each trace σ ∈ l, and for each sequence es, we
compute LPtr(σ, es). The computed values are used as input
for the computation of the log’s confidence with regard to
LP . The reported log’s confidence of l with regard to A, is
the minimum of all the confidences for the log-properties.

V. EXAMPLE COMPUTATION

We demonstrate log confidence computation on our running
example model and 7 randomly generated traces from this
model, shown in Fig. 2. For these traces, Table I shows the
computation of log confidence with regard to the invariant
property ‘always precedes’ (LP←, as used in the confidence
computation for Synoptic, see Sect. IV-B).

The table cell i, j corresponds to the invariant ‘i al-
ways precedes j’, e.g., the table cell in the row of
closeEntry and column of close corresponds to the
property ‘closeEntry always precedes close’. The value
in table cell i, j is q̂〈i,j〉 from Equ. 1. For example, the value
q̂closeEntry;close = 0.57 is the probability to have an instance
of closeEntry;close with ‘always precedes’ in a random
trace, given the log that we have (the invariant holds in 4 of the
7 traces (tr1,tr2,tr3, and tr7), so 4/7 = 0.57 is the probability
that closeEntry always precedes close). Since the log
has 7 traces, the negative contribution to the accumulating
confidence for this property is (0.57)7 = 0.02 (see Equ. 2)
(that’s the probability that in a random log of size 7, this
invariant will hold).

The overall confidence for the ‘always precedes’ property
is computed by assigning all the numbers from the table to
the q̂ess in Equ. 2 (we omit the zeros from the formula):
1− (0.02 + 0.1 + 0.02 + 0.02 + 0.02 + 0.02 + 0.02) = 0.78.

VI. EVALUATION

The research questions guiding our evaluation are:
RQ1 Is the representation of the three specification mining

algorithms using LP s sound?
RQ2 Can log confidence be efficiently computed and serve

as an effective proxy for true log completeness?

A. Models Used in Evaluation
In the evaluation we used 24 finite-state automaton models,

taken from 9 publicly available previously published works
and reports: [12], [19], [23], [28], [32], [34]–[36] and [40].
The models varied in size and complexity: the alphabet size
ranged from 7 to 42 (mean 14.42), the number of states ranged
from 5 to 24 (mean 12.62), and the number of transitions
ranged from 15 to 209 (mean 37.58).

All logs, models, and implementation code described in this
paper are available for inspection and reproduction together
with documentation from [1].

B. RQ1: Soundness of Representation

1) Methodology: To evaluate the soundness of the represen-
tation of the three specification mining algorithms using LP s
we use two definitions: LP -equivalence and A-equivalence.

First, roughly, given a log-property LP , two logs are LP -
equivalent if their results agree on all sequences. Formally:

Definition 5 (LP -equivalence). For a log-property LP , two
logs l1, l2 are LP -equivalent iff ∀es ∈ Σi

LPlog({LPtr(σ, es)|σ ∈ l1}) = LPlog({LPtr(σ, es)|σ ∈ l2}).

We trivially lift the above definition to a set of LP s, that
is, from each LP alone to the set LP (A).

Second, roughly, given a specification mining algorithm A,
two logs are A-equivalent if they agree on the result of the
algorithm. Formally:

Definition 6 (A-equivalence). For a specification mining al-
gorithm A, two logs l1, l2 are A-equivalent iff A(l1) = A(l2).

Finally, we say that the LP representation of an algo-
rithm A, LP (A), is sound, iff LP (A)-equivalence implies A-
equivalence.

2) Experiment Design: For each model we used the follow-
ing experiment protocol. First, we generated traces from the
model using a trace generator. Second, for each algorithm, we
found the minimal sub log (in some arbitrary order of traces)
which is LP (A)-equivalent to the entire log. Third, we ran the
specification mining algorithm A on the two logs and checked
whether the output is the same.

For each of the 24 models, and for each specification
mining algorithm, k-Tails, Synoptic, and mining t/e, we ran
the experiment three times. In all experiments we used the
trace generator from [28] with path coverage (but high state
coverage for some of the models because the generator ran out
of memory when computing path coverage for these models).

3) Results: In all executions, i.e., for all models and for all
algorithms, the model generated from the sub log was identical
to the one generated from the entire log.

To answer [RQ1], we have strong evidence for the
soundness of the LP s representation, for all three
algorithms.

C. RQ2: Effectiveness of Log Confidence

1) Methodology: To evaluate the effectiveness of log con-
fidence we use two key measures, reliability and redundancy.

For a fixed algorithm A, we define the reliability of a log to
be 1 if the log is complete with regard to A and 0 otherwise.



For a set of logs L, a mean reliability close to 1 hints that
most of the logs are complete. For a fixed algorithm A, we
define the redundancy of a log to measure how close is it to its
minimal prefix log which is complete (assuming an arbitrary
fixed order of traces). For a set of logs L, a mean redundancy
close to 0 and a low standard deviation hint that the logs do
not include much redundant traces. Formally:

Definition 7 (reliability). For an algorithm A, the reliability

of a log l is rel(l) =

{
1 l is complete with regard to A
0 otherwise

.

Definition 8 (redundancy). For an algorithm A, given a log l
(in a fixed arbitrary order), let imin(l) be the minimal index
of traces in l such that the set of traces σ1, σ2, . . . , σimin

∈ l
is complete with regard to A. The redundancy of a log l is
red(l) = 1− imin(l)

|l| .

Example 5. Recall the log and model of our running example
shown in Fig. 2, and the results of computing its confidence
with regard to the ‘always precedes’ property, as shown in
Table I. This log’s reliability with regard to this property is
rel(l) = 1. Since it reaches completeness for this property
already after the 4th trace and we have 7 traces, its redundancy
with regard to this property is red(l) = 1− 4/7 = 0.43.

Note that to calculate reliability and redundancy, as in the
above example, one must know the system from which the
traces were extracted, so that she can calculate a true value
for each property. This is typically unknown in a real-world
setting, but it is known in our controlled evaluation setting.

In order to answer [RQ2], we are interested in the per-
formance of the confidence computation, in the values of the
reliability and their correlation with the confidence values, and
in the redundancy values, across the 24 models, for each of
the three algorithms.

2) Experiment Design: For each model we used the follow-
ing experiment protocol. First, we generated traces from the
model using a trace generator. Second, we created an initial log
by randomly selecting a minimal number of traces. Third, for
several fixed thresholds, we iteratively computed the current
log’s confidence and added a trace to it; adding traces to the
current log until we reached the fixed confidence threshold
(or we ran out of traces to add). Finally, we computed the
reliability and redundancy of the final log.

For each model and for each algorithm, we repeated the
above protocol 200 times and computed the mean of reliability
and redundancy for the sets of 200 logs.

In all experiments we used the trace generator of [28] with
path coverage (high state coverage for some of the models
because the generator ran out of memory when computing
path coverage for them), a minimal number of 10 traces, and
a series of fixed confidence thresholds, from 0.20 to 0.95;
i.e., for each threshold th, we started with an initial log by
randomly selecting 10 traces, and continued the addition of
traces to the log until the probability that it is complete was
at least th (or we ran out of traces to add). We checked true
completeness using a model-checker, i.e., by expressing the

relevant log-properties in temporal logic and verifying them
against the model.

We used k = 2 for k-Tails, and manually selected a trigger
of length 2 or 3 for the triggers and effects algorithm.

3) Results: Performance. All experiments were executed
on an ordinary laptop computer, Intel i7 CPU 3.0GHz, 8GB
RAM with Windows 7 64-bit OS, Java 1.7.0 09 64-bit. For all
models, in all our experiments, confidence computation never
exceeded 15 milliseconds. This shows that the log confidence
computation for the three specification mining algorithms we
deal with is fast. It is not surprising as the computation is, by
definition, linear in the number of traces in the log.
Reliability. Fig. 3 shows the reliability results across the 24
models, for increasing confidence thresholds, for each of the
three algorithms. The boxplots show the median reliability, the
25th and 75th percentile with range 3/2 for whiskers.

For all three algorithms, the boxplots show that in general,
the reliability increases as the confidence threshold increases,
and the variance in reliability across the different models
decreases as the confidence threshold increases. Specifically,
when the confidence threshold is 0.95, the reliability is very
high, and its variance across the different models is very low.

The boxplots also show that the reliability is always greater
or equal to the confidence threshold. This is a result of
the conservative nature of our confidence computation; it
is much more likely to underestimate completeness than to
overestimate it. It is also a result of our experiment design: we
stop adding traces to the log once its confidence pass the given
threshold, i.e, the actual confidence is higher than the threshold
used and shown in the figure (the lower the threshold, the
higher the possible difference).

The Spearman’s rank correlation between confidence and
reliability was ρ = .68 (p < .05), ρ = .70 (p < .05), and ρ =
.52 (p < .05), for k-Tails, Synoptic, and triggers and effects,
respectively. These values are considered to express strong
correlation [10, p. 140]. A power analysis for the correlation
tests shows that our sample size of n = 120 is much above the
minimal size required with significance level α = .05, power
= .8, and our resulting correlation coefficients.
Redundancy. Fig. 4 shows the redundancy results across the
24 models, for increasing confidence thresholds, for each of
the three mining algorithms. For all algorithms, the boxplots
show that in general, as expected, the redundancy increases as
the confidence threshold increases. When confidence threshold
is .95, the maximal redundancy is of about .74 and the
maximal median redundancy is about .63. The worst case for
the three algorithms was reaching the .95 threshold with a log
that is about 4 times longer than its minimal complete sublog.

Log sizes differed much between the different models and
across the different confidence thresholds, roughly ranging
from 20 to 2000 traces per log. Some models required many
more traces than others to reach high confidence (across all
three algorithms). The results for the individual models are
available from [1].

We observe that the variance between the different models,
for both reliability and redundancy, seems higher for mining
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Fig. 3: Reliability results for the three specification mining algorithms. See Sect. VI-C.
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Fig. 4: Redundancy results for the three specification mining algorithms. See Sect. VI-C.

t/e than for the other two algorithms. This may be viewed as
a weakness. However, the median values for mining t/e, are
higher for reliability and lower for redundancy, compared to
the other two algorithms, which may be viewed as a strength.
Note though that the kind of candidate specification mined by
mining t/e is very different from the kind mined by the other
two algorithms, hence they are not comparable.

To answer [RQ2], we have strong evidence that log
confidence can be efficiently computed and is an effective
proxy for true completeness for the three specification
mining algorithms.

D. Threats to Validity

We discuss threats to the validity of our results. First,
the selection of models in our evaluation may not represent
typical systems. To mitigate this, we used 24 publicly available
models taken from 9 previous works (see Sect. VI-A). Yet, we
do not know if these are representative of real-world systems.

Second, in our evaluation we used a publicly available
trace generator [28] with path coverage (when the model was
too complex for the trace generator to handle, we used state
coverage). It is possible that one may get different results if a
different trace generator or a different coverage criterion are
used. In a real-world setting, when the model is unknown,
code coverage methods may be used.

Third, the selection and order of traces in the log affect the
point where the analysis may reach the confidence threshold
and thus affect the point used to compute redundancy. We
mitigated this by using randomization in the selection of traces
and in the order in which they were analyzed, and by repeating
all evaluation experiments 200 times.

Fourth, we have evaluated the soundness of the LP s empir-
ically against specific implementations of the three algorithms.
All have variants, which may produce slightly different out-
puts, e.g., Synoptic chooses the order in which invariants are
used in the CEGAR process arbitrarily. Thus, when we write
A(l) in Sect. VI-B, we refer to a specific implementation only.

Finally, our work presents a general framework for log com-
pleteness and confidence but the evaluation is limited to three
algorithms. One may get different results when the framework
is applied to other algorithms. Still the results provide some
evidence for the generalizability of the framework.

VII. DISCUSSION

We now discuss some important features, design decisions,
and several limitations of our present work. An important
feature of our log confidence computation is that it is not
monotonic but converges to 1 when the size of the log
approaches infinity (for all three algorithms). On the one hand,
as traces are added to a log, its confidence may increase
or decrease; in the absence of additional information, e.g.,
about the order in which traces are produced, a new trace



may introduce new information (e.g., invalidate an invariant,
reveal a new k-length sequence), which leads us to revise
our previous estimations. Thus, confidence is not necessarily
monotonic. Still, in contrast, it is important to note that our
notion of log completeness is monotonic, i.e., by definition,
any extension of a complete log is complete. On the other
hand, despite the non monotonicity, the expected confidence
converges to 1 when the size of the log approaches infinity
(for the three algorithms). For example, for k-Tails, we have

lim
n→+∞

E

1−
∑

{es|q̂es>0}

(1− q̂es)n
 = 1.

Thus, as the size of the log grows, the expected change in
confidence that an additional trace may cause approaches zero.
The proof for this claim can be found in [1].

In the presence of multiple LP s in LP (A), we have chosen
to define confidence as the minimum of confidences over
all LP s. We consider this to be a preliminary, conservative
choice, which, in the tradeoff between high reliability and low
redundancy, favors the former over the latter. Alternatively,
one may choose other less conservative yet perhaps more
robust aggregate functions, e.g., the harmonic mean, or some
weighted average in case some LP s are considered more
important than others. We leave the investigation of these
alternatives, per algorithm, to future work.

An important assumption underlying our framework is that
the traces are randomly and independently chosen from T (M).
This assumption may not always hold, e.g., if traces depend on
running tests that were generated according to some strategy.
We note, however, that our work is meant to be used to
evaluate the confidence one may have in the results of applying
mining algorithms to logs of execution traces. This should not
be confused with evaluating the quality of a test suite.

Finally, an apparent limitation relates to the size of the log.
For logs with only a few traces, confidence results are very
sensitive and fluctuate much, so they are practically useless.
In practice however this is typically not a problem because
real-world logs consist of many traces. Moreover, as stated
above, as the size of the log grows, the expected fluctuations
approach zero.

VIII. RELATED WORK

Dynamic Specification Mining. Much literature deals with
looking for candidate specifications in execution traces
(e.g., [5], [13]–[15], [17], [18], [21], [22], [26], [27], [29]–[31],
[37], [38], [41], [42]). The works differ in the kinds of traces
they take as input and in the kinds of candidate specification
they present as output.

In recent work, Beschastnikh et al. [4] have presented
InvariMint, a framework for declarative specification of FSM-
inference dynamic log analysis algorithms. Our work may
be viewed as building on InvariMint’s presentation of model
inference algorithms using declarative properties, as a key to
its ability to define log completeness for k-Tails and Synoptic.
Formally, however, we define properties in a different way.

While InvariMint uses parameterized FSM and evaluation
functions to describe property types, and applies composition
functions to combine them, our framework describes proper-
ties using the functions LPtr and LPlog, which enable the
computation of probabilities. It may be possible to define
our notion of log completeness on top of the InvariMint
framework. We leave this for future work.
Addressing Completeness. Dallmeier et al. [12] consider
dynamic specification mining and ask: what makes us believe
that we have seen sufficiently many executions? While it seems
that we ask a similar question, our work is fundamentally
different. In [12], a partial set of traces is heuristically enriched
in order to explore previously unobserved aspects of the
execution space. In contrast, we consider a black box setting
and provide a formal probabilistic measure to the notion of
‘sufficiently many traces’. This allows engineers to assess the
completeness of the traces they have, relative to the dynamic
specification mining algorithm of their choice.

Hee et al. [33] presented a probabilistic approach to log
completeness of the α-algorithm [2], which mines Petri nets
and is used in the field of process mining. Our work extends
the work of Hee et al. significantly: we present an algorithm-
independent framework for log completeness and demonstrate
its application to three algorithms from the dynamic specifi-
cation mining literature, k-Tails, Synoptic, and mining t/e.

Apart from our own recent preliminary work [8], where we
have presented a notion of confidence computation for k-Tails,
with preliminary evaluation, to the best of our knowledge,
no other work has considered the question of estimating log
completeness with regard to these three algorithms specifically
and with regard to dynamic specification mining in general.

IX. CONCLUSION

In this paper we addressed the question of analyzing too
few or too many traces, in the context of dynamic specification
mining, by presenting a novel, black box, probabilistic frame-
work based on a notion of log completeness. We applied the
framework to three dynamic specification mining algorithms
from the literature. Our evaluation over 24 models from the lit-
erature provided evidence for the effectiveness and usefulness
of our work.

Given large logs as input, whose analysis may require too
much time and memory to the extent that make it impractical,
our work can be used to analyze only a fraction of the log
yet to construct a candidate specification which is with high
confidence identical to the specification one could build from
the complete log. The work is part of our larger project on
investigating ways to scale up specification mining and other
log analysis algorithms in face of long and complex logs,
see [7].
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