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Abstract—Combinatorial test design (CTD) is an effective test
design technique, considered to be a testing best practice. CTD
provides automatic test plan generation, but it requires a manual
definition of the test space in the form of a combinatorial
model. As the system under test evolves, e.g., due to iterative
development processes and bug fixing, so does the test space, and
thus, in the context of CTD, evolution translates into frequent
manual model definition updates. Manually reasoning about the
differences between versions of real-world models following such
updates is infeasible due to their complexity and size. Moreover,
representing the differences is challenging.

In this work, we propose a first syntactic and semantic
differencing technique for combinatorial models of test designs.
We define a concise and canonical representation for differences
between two models, and suggest a scalable algorithm for auto-
matically computing and presenting it. We use our differencing
technique to analyze the evolution of 42 real-world industrial
models, demonstrating its applicability and scalability. Further, a
user study with 16 CTD practitioners shows that comprehension
of differences between real-world combinatorial model versions is
challenging and that our differencing tool significantly improves
the performance of less experienced practitioners. The analysis
and user study provide evidence for the potential usefulness of
our differencing approach.

Our work advances the state-of-the-art in CTD with better
capabilities for change comprehension and management.

I. INTRODUCTION

One of the effective techniques for coping with the ver-

ification challenge of increasingly complex software systems

is Combinatorial Test Design (CTD), a.k.a. combinatorial test-

ing [4], [8], [10], [13], [17], [35], [36]. CTD requires a manual

definition of the test space in the form of a combinatorial
model, consisting of a set of parameters, their respective

values, and constraints on the value combinations. A valid test

in the test space is defined to be an assignment of one value to

each parameter that satisfies the constraints. A CTD algorithm

automatically constructs a subset of the set of valid tests so that

it covers all valid value combinations of every t parameters,

where t is usually a user input. This systematic selection of

tests is based on empirical data that shows that in most cases,

the appearance of a bug depends on the interaction between a

small number of features of the system under test [10], [18],

[31].

An under-explored challenge for wide deployment of CTD

in industry is the manual process for modeling and maintaining

the test space. In practice, creating a CTD model is not a one

time effort; when the system under test evolves, so should

the models. In face of the move to agile methodology and to

continuous delivery mode, where software development cycles

are getting ever shorter, test design needs to frequently adjust

to changes, which in the context of CTD means frequent

model definition updates. However, although in these settings

technologies for handling model changes are increasingly

necessary, we are unaware of any work that reasons about

the evolution process of combinatorial models or provides

tool support for it. A recent survey by Nie et al. [26] reveals

that only around 5% of the publications on CTD explore the

crucial modeling process, and the topic of model maintenance

is not even mentioned in [26]. Close to 40 CTD tools are listed

in [27], e.g., PICT [9], ACTS [19], Jenny [16], and AETG [6],

but to the best of our knowledge, none of these existing tools

provides indication on the effect of change operations on the

model, i.e., what is the relation between the original model

and the new one, and how they differ. Without such tool

support, the practitioner is “left in the dark” as to whether

the performed change will result in the intended effect, and

what other changes may be required. When a series of such

change operations is performed, as is typically the case, this

problem exacerbates.

In this work, we propose a first approach for syntactic and

semantic differencing of combinatorial models. Computing

and representing the differences between models are chal-

lenging tasks. First, some parts of a model can implicitly

change due to explicit changes to other parts, and thus the

resulting differences will not be revealed by a purely syntactic

comparison. For example, adding a new value to a parameter

that appears in the constraints can result in new tests being

defined as invalid, even without any explicit changes to the

constraints. Second, there can be different syntactic represen-

tations to the same model (i.e., representations that result in the

same set of valid tests). Specifically, it is challenging to clearly

and concisely represent differences between constraints, which

are propositional logic formulas over multi-valued parameters.

Finally, as our evidence from the field shows, real-world

models can be huge, thus computing a semantic differencing

must scale well in order to be used in practice.

Our work addresses these challenges by proposing a canon-

ical representation of a combinatorial model, in terms of the

value combinations that are excluded from its set of valid

tests. The importance of this representation is in its use

as a basis for a comparison between models. Other non-
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canonical representations cannot be used for comparison. Our

differencing approach consists of two parts. The syntactic

differencing shows the additions and removals of parameters,

values, and constraints. The semantic differencing concisely

computes and presents the differences in the set of valid tests,

based on the canonical representation of the models.

To scale the computation to real-world model sizes, we use

an efficient representation of the sets of valid tests and their

differences, which is based on Binary Decision Diagrams [3],

a compact data structure for representing and manipulating

Boolean functions.

It is important to note that differencing of CTD models

is not a mere theoretical exercise. First, the model, and not

the test suite that is directly and automatically derived from

it, is the main artifact that CTD test designers create, read,

revise, and maintain. Second, the cost of an incorrect model

update can be very high: if the model change is incomplete

then new tests generated from the model will not adequately

cover the software change; if the model change is incorrect it

may result in generating redundant or erroneous tests. Finally,

as we will demonstrate in Section III, CTD model updates

can be quite tricky due to the implicit dependencies between

the different parts of the model. Thus, in this work we focus

on differencing at the model level. Our differencing technique

serves as a review tool for practitioners to verify that their

model updates are complete and correct.

We implemented the differencing technique within the

industrial-strength commercial CTD tool IBM Functional Cov-

erage Unified Solution (IBM FOCUS) [14], [30]. IBM FOCUS

has been in use already for several years by hundreds of CTD

practitioners inside and outside of IBM.

To evaluate the applicability of our ideas and implemen-

tation to real-world models and their versions, we applied

our differencing technique to 42 real-world industrial models

with a total of 107 versions (2-5 versions per model, 65

commits). Our analysis reveals that while real-world commits

of combinatorial models of test designs tend to be large

and complex in practice, our approach provides acceptable

performance times in almost all cases.

We further evaluated the effect of our differencing technique

on users by conducting a user study with 16 CTD practitioners

on two real-world models, each consisting of two real-world

versions. The results show that comprehension of differences

between real-world combinatorial model versions is challeng-

ing and that our differencing tool improves the performance of

practitioners. This was most evident for the 8 less experienced

practitioners, whose score improved by over 40 percent when

using our differencing tool.

To conclude, our contributions are as follows: a first ap-

proach for syntactic and semantic differencing of combinato-

rial models of test designs; a scalable implementation for our

differencing technique, implemented in an industrial-strength

commercial CTD tool; the application of the new differencing

technique to 42 real-world industrial models with a total of

107 versions; and a user study with CTD practitioners that

shows that our differencing technique significantly improves

the performance of less experienced practitioners in correct

comprehension of differences between real-world model ver-

sions. The proposed differencing technique advances the state-

of-the-art in CTD with new tools for change comprehension

and management.

II. BACKGROUND

We provide background on combinatorial models and their

semantics and on the use of binary decision diagrams to

represent them.

Combinatorial Models and Their Semantics. A combinato-

rial model is defined as follows. Let P = {p1, . . . , pn} be a

labelled set of parameters, V = {V1, . . . , Vn} a labelled set

of finite value sets, where Vi is the set of values for pi, and

C a set of Boolean propositional constraints over P . A test

(v1, . . . , vm), where ∀i, vi ∈ Vi, is a tuple of assignments to

the parameters in P .

The semantics used in practice by CTD tools [27] is Boolean

semantics. In this semantics, a valid test is a test that satisfies

all constraints in C. The semantics of the model is the set of

all its valid tests, denoted by S(P, V, C).
Using Binary Decision Diagrams to Represent Combina-
torial Models. In [30], a compact representation of com-

binatorial models using Binary Decision Diagrams (BDDs)

was presented. BDDs [3] are a compact data structure for

representing and manipulating Boolean functions, commonly

used in formal verification [5] and in logic synthesis [21].

[30] utilizes the efficient computation of Boolean operations

on BDDs such as negation, conjunction and disjunction, to

compute the BDD representing the set of valid tests from

the user-specified constraints. The set of invalid tests in the

model is represented using the conjunction of the BDDs for

each of the constraints. Multi-valued parameters are handled

using standard Boolean encoding and reduction techniques

to BDDs [25]. The set of valid tests is represented by the

negation of the BDD for the invalid tests, conjunct with a BDD

that represents the legal multi-valued to Boolean encodings of

the parameter values. This BDD-based representation of the

combinatorial model is the basis for the implementation of

our semantic differencing.

III. RUNNING EXAMPLE AND OVERVIEW

We start off with an example and overview of our work. The

presentation in this section is semi-formal. Formal definitions

appear in Section IV.

Table I depicts the parameters, values, and constraints of

a combinatorial model for an on-line shopping system, which

we use as a running example. The model defines the test space

and which tests in it are valid. For example, the test (IS =
InStock,OS = Air,DT = Immediate) is valid, while the

test (IS = InStock,OS = Ground,DT = Immediate) is

invalid.

Below we follow a series of updates to the model, inspired

by similar updates we have seen in the evolution of real-world

models, adding a value, updating a constraint, splitting a pa-

rameter etc. We describe the updates, discuss their semantics,
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TABLE I: Example on-line shopping model

Parameter Values
ItemStatus (IS) InStock, OutOfStock, NoSuchProduct

OrderShipping (OS) Air, Ground

DeliveryTimeframe (DT) Immediate, OneWeek, OneMonth

Constraints
DT = Immediate→ OS = Air
DT = OneMonth→ OS = Ground

and demonstrate how our differencing solution handles them.

The updates are relatively small and local. We use them to

demonstrate the basic principles of our analysis, as well as

the challenges associated with differencing, even with such

seemingly simple updates.

From V1 to V2. Following the addition of a new feature to the

system, a practitioner added the value Sea to the parameter

OrderShipping, and committed a second version of the

model. One may view this form of change as an extension,

where parts are added to the model to describe the test space

in more detail. Figure 1 depicts the result of our differencing

analysis between the first two versions of the model.

The differencing consists of two parts, syntactic and seman-

tic. The syntactic part reports the changes that were made to

the parameters, constraints, and values. As expected, in our

example it reports solely on the addition of the Sea value

to the OS parameter. The second, semantic part, reports the

changes in the set of valid tests, in terms of its strongest
exclusions. A strongest exclusion is a combination that is

excluded by the constraints in the model (and thus does not

appear in any valid test), but whose every strict subset is

included in the model. The motivation for showing the changes

to the strongest exclusions is twofold. First, they constitute a

canonical representation of the test space, as we will show in

Section IV, and therefore can be used as a basis for comparison

between different test spaces. Second, they represent the tests

that were excluded from the model in a concise form, and thus

can be used to provide information to the practitioner about

the differences between the test spaces. Note that while the

constraints were not explicitly updated following the addition

of the Sea value, i.e., syntactically the constraints are identical

in the two versions, our analysis reveals that two new strongest

exclusions were added to the model: (OS = Sea,DT =
Immediate), and (OS = Sea,DT = OneMonth).

From V2 to V3. When reviewing these added exclusions, the

practitioner may have realized that the constraints need to be

updated as well, in order to reflect the intended use of the new

feature. Thus, she deleted the second constraint and wrote a

new one instead: DT = OneMonth → OS = Ground∨OS =
Sea, and committed a third version of the model. When the

differencing analysis is performed between the third and the

second versions, the strongest exclusion (OS = Sea,DT =
OneMonth) will be marked as removed, since it is no longer

an exclusion in the third version. One may view this form of

change, where a strongest exclusion becomes included in the

test space, without being part of a new strongest exclusion, as

a correction.

From V3 to V4. After further inquiries, the practitioner real-

ized that delivery time frame of one month actually consists

of two different values, 6To10WorkingDays and

Over10WorkingDays, which represent two separate log-

ical paths of the application under test. Thus, she replaced

the OneMonth value with these two values, deleted the

second constraint and wrote a new one instead: DT =
6To10WorkingDays ∨ DT = Over10WorkingDays →
OS = Ground ∨ OS = Sea, and committed a fourth version

of the model. Figure 2 depicts the result of our differencing

analysis between the third and fourth versions of the model.

One may view this form of change, where a parameter

or a value is divided into several different cases, as a split.
The split of the value is displayed on the left side, and the

split of the strongest exclusion is displayed on the right side,

where the original one is removed and replaced with new

strongest exclusions, one for each case. The split pattern is

easy to detect when viewing the changes to the strongest

exclusions, whereas it becomes less obvious when viewing

the removed and added constraints. Furthermore, a constraint

can have different syntactic representations that are seman-

tically equivalent. For example, the second constraint in the

fourth version could have been DT �= Immediate ∧ DT �=
OneWeek → OS = Ground ∨ OS = Sea, resulting in a

syntactically different yet semantically equivalent model. The

model with this representation of the second constraint would

completely hide the fact that it splits OneMonth into two new

values, as these values do not even appear in the constraint.

Moreover, this version of the constraint can be used also in the

third version of the model, in which case no explicit changes

would have been made to the constraints when moving to the

fourth version, though the split of the strongest exclusions

would still occur.

IV. FORMAL SOLUTION FOR MODEL DIFFERENCING

We now formally present our proposed differencing tech-

nique for combinatorial models, followed by a description of

our algorithm for computing it. Throughout this section we

will use the notations defined in Section II and demonstrate

the ideas on the running example presented in Section III.

A. Model Differencing Definitions

Given a combinatorial model S(P, V, C), for every parame-

ter p ∈ P , we define p.name to be its identifier. Similarly, for

every Vi ∈ V , v.name denotes the identifier of every value

v ∈ Vi. We define corresponding sets for the identifiers of the

parameters and their values, PN = {p.name | p ∈ P} and

∀Vi ∈ V,VNi = {v.name | v ∈ Vi}. For every constraint

c ∈ C, we define c.expr to be its Boolean expression. We

define the set CE = {c.expr | c ∈ C} for the expressions of

the constraints.

Given two models S1(P 1, V 1, C1) and S2(P 2, V 2, C2),
we define a syntactic differencing Diff syn(S

1, S2) and a
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Fig. 1: Differencing between the first and second versions. On the left, the syntactic differencing of parameters, constraints,

and values. On the right, the semantic differencing of strongest exclusions.

Fig. 2: Differencing between the third and fourth versions. On the left, the syntactic differencing of parameters, constraints,

and values. On the right, the semantic differencing of strongest exclusions.

complete semantic differencing Diff csem(S1, S2) between the

two models as follows.

1) Syntactic Differencing: Diff syn(S
1, S2) consists of the

following parts:

1) Parameter additions: {p | p.name ∈ PN1 \ PN2}
2) Parameter removals: {p | p.name ∈ PN2 \ PN1}
3) Constraint additions: {c | c.expr ∈ CE1 \ CE2}
4) Constraint removals: {c | c.expr ∈ CE2 \ CE1}
5) Value additions:

⋃
pi∈P 1,pj∈P 2{v | v ∈ V 1

i∧v.name ∈
VN1

i \ VN2
j ∧ pi.name = pj .name}

6) Value removals:
⋃

pi∈P 1,pj∈P 2{v | v ∈ V 2
j∧v.name ∈

VN2
j \ VN1

i ∧ pi.name = pj .name}
For example, the left side of Figure 2 presents the syntactic

differencing between V 3 and V 4 of the on-line shopping

model, which consists of the addition of two values to the

common parameter DT, the removal of one value from it, no

parameter additions or removals, the addition of one constraint,

and the removal of another.

2) Semantic Differencing: While syntactic differencing rea-

sons about the syntactic changes in the parameters and values,

complete semantic differencing reasons about all the differ-

ences in the test space of S1 and S2.
To enable a comparison of the two test spaces, we first

define a concise and canonical representation of a test space.

The representation we propose is based on the notion of

strongest exclusions. A strongest exclusion is a combination

that is excluded by the constraints in the model (and thus does

not appear in any valid test), but whose every strict subset is

included in the model and thus appears in at least one valid

test. The set of strongest exclusions of a model, together with

the set of parameters and their values, uniquely define the test

space of the model.
Theorem 4.1: Let SE be the set of strongest exclusions

of a combinatorial model S(P, V, C). Then (P, V, SE) is a

canonical representation of S(P, V, C).
Proof: We will show that for two models S1(P, V, C1)

and S2(P, V, C2), if S1 = S2 (they have the same set of valid

tests), then SE1 = SE2. Assume to the contrary, i.e., that

there exists a strongest exclusion e ∈ SE1 such that e �∈ SE2.

Then it follows from the definition of a strongest exclusion that

one of the following holds: (1) e strictly contains a strongest

exclusion e′ ∈ SE2. Since S1 = S2, it must hold that e′
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is excluded from S1, contrary to our initial assumption that

e ∈ SE1. (2) e is not an exclusion in S2, which means there

is a test t ∈ S2 that contains e. Since S1 = S2, it holds that

t ∈ S1, contrary to our initial assumption that e ∈ SE1.

For example, for the on-line shopping model from Sec-

tion III, SEV 1 = {(OS = Air,DT = OneMonth), (OS =
Ground,DT = Immediate)}. Note that each strongest

exclusion represents multiple complete tests that are excluded

from the model. Note also that each constraint defines one or

more strongest exclusions.

Diff csem(S1, S2) consists of the following parts:

1) Strongest exclusion additions: {e|e ∈ SE1 \ SE2};

2) Strongest exclusion removals: {e|e ∈ SE2 \ SE1}.

For example, for the on-line shopping model, SEV 2 =
SEV 1 ∪ {(OS = Sea,DT = Immediate), (OS = Sea,DT =
OneMonth)}. Hence, Diff csem(V 2, V 1) contains the latter

two strongest exclusions, as depicted on the right side of

Figure 1.

The canonical representation of a model using strongest

exclusions allows us to define the completion level (CL) of a

version of a model, as well as of a commit (differencing two

model versions). The CL of a model version is the maximal

arity of a single strongest exclusion. It indicates the maximal

depth of exclusions that needs to be explored in order to reach

a complete canonical representation of the model.

In our running example, the CL of V 5 is 3; V 5’s canonical

representation includes no strongest exclusions of arity larger

than 3.

CL is extended naturally from a single model version to the

comparison of a commit consisting of two model versions.

Specifically, the CL of a commit is the maximum between the

CLs of the two model versions, before and after the commit.

It represents an upper bound on the maximal number of

parameter values appearing in all strongest exclusions required

for presenting all the commit differences. The CL of a commit

is only an upper bound on the largest strongest exclusion that

will appear in the diff, because the diff contains only strongest

exclusions that are not common to both model versions. As

in the single model case, we use the CL of a commit as an

indicator for the maximal depth that needs to be explored in

order to reach a complete differencing between two model

versions. In Section IV-B, we present a way to compute the

CL of a model (and of a commit).

While presenting the differences in terms of strongest exclu-

sions is purely semantic and independent of the syntactic rep-

resentation of the model, it is also beneficial to link semantic

information to syntactic information. As shown in Figures 1

and 2, we achieve this information linking by mapping the

strongest exclusions that appear in the differencing back to

their excluding constraints, as specified by the CTD practi-

tioner. Each strongest exclusion in Diff csem(S1, S2) serves as

a witness for the test space change induced by its excluding

constraint under the changes to the model parameters and

values. For example, in Figure 1, the strongest exclusion

(OS = Sea,DT = Immediate) is mapped to its excluding

constraint DT = Immediate → OS = Air. The information

that this constraint is responsible for the added strongest

exclusion is particularly valuable in this case, since no explicit

changes were made to the constraints in version V 2 to exclude

this combination, following the addition of the Sea value.

Discussion of Alternatives. A rather naı̈ve approach for

(partial) semantic differencing could have been to present

complete tests that are valid in one version of the model and

not in the other. One problem with this approach is that since

the versions may have different parameters and values, the

question whether a test in one version is valid in another

version may not be well defined, i.e., the constraints in one

version may refer to parameters and values that do not exist in

the other version, and vice versa. Another problem with this

naı̈ve approach is that it must be partial, since the number of

such complete tests may be huge. Our solution avoids these

two problems. First, by computing the strongest exclusions

in each model, and then comparing the two resulting sets of

value combinations, our differencing is well defined. Second,

since each strongest exclusion represents numerous complete

tests that are excluded from the model, our solution concisely

represents all the test space differences between the two

models, and is orders of magnitude smaller than one that relies

on complete tests.

Another alternative approach to the use of strongest ex-

clusions for semantic differencing could be to use partial

inclusions or strongest inclusions. Partial inclusions are value

combinations that are contained in at least one valid test.

Strongest inclusions are value combinations whose every ex-

tension to a complete test forms a valid test. However, both op-

tions of using inclusions are significantly less informative than

using strongest exclusions. Typically, all parameter values of

a model are valid in combination with at least one assignment

to the other parameters. Hence, all model values are partial

inclusions. A diff based on partial inclusions would simply

result in the list of added and removed values, making the

semantic differencing identical to our syntactic one. Moreover,

partial inclusions do not form a canonical representation of a

model. Strongest inclusions form a canonical representation,

but are usually complete tests. Thus, a diff based on strongest

inclusions will result in a significantly larger and less concise

Diff csem(S1, S2) than when using strongest exclusions.

3) Reducing the size of the semantic differencing: While

a complete semantic differencing is desirable, it is also ben-

eficial to reduce the amount of strongest exclusions that the

practitioner needs to review. Two techniques to achieve this are

filtering out redundant information, and dividing the presented

information into categories.

Derived Exclusions. Redundant information may exist in

Diff csem(S1, S2) due to derived exclusions. A derived exclu-

sion is an invalid value combination (i.e., it is excluded from

the model) that is excluded not due to any single constraint but

rather due to the interaction between different constraints. For

example, consider the first constraint in Table I, and assume

we add a third constraint to the model: OS = Air → IS =
InStock. The interaction of the two constraints yields a de-
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rived exclusion, (DT = Immediate,IS = OutOfStock),
which is not directly excluded by any of the three constraints.

Some of the strongest exclusions that appear in the diff

may be derived exclusions, and thus contain redundant infor-

mation – the fact that they are excluded can be concluded

from other excluded combinations in the diff. To eliminate

this redundancy and reduce the amount of information in

Diff csem(S1, S2), we remove derived exclusions from the

result of the comparison between SE1 and SE2.

Note that due the removal of derived exclusions, Diff csem
(S1, S2) is no longer canonical, since the same exclusion can

be derived in one model and not in another semantically-

equivalent model (i.e., that has the same set of valid tests),

depending on the syntactic representation of the constraints.

We note however that the importance of strongest exclusions

as a canonical representation of a model is for comparison

purposes (other non-canonical representations cannot be used

for comparison), and reduction to a non-canonical form is done

only on the diff results after the comparison, for presentation

purposes.

Removing derived exclusions has two important advantages.

First, it enables tighter linkage of the semantic information

to syntactic information, because each strongest exclusion

presented in Diff csem(S1, S2) can be linked to a single user-

specified constraint that excludes it, as presented in Figures 1

and 2. Second, it filters out redundant information from the

presentation and reduces the number of exclusions that the

practitioner needs to review.

Categorization. Another technique that helps with the analysis

of the diff is to divide the computed information into cate-

gories. We observe that most of the analysis effort concentrates

on the strongest exclusions that contain common parameters,

because they indicate changes in the parts of the test space

that belong to both model versions. When a set of parameters

is removed from the model, it is natural that all the constraints

on their inter-relations are also removed from the model, and

similarly for the case of parameter additions.

To this end, and for clarity of presentation, we divide the

semantic diff view into three separate views: (1) additions

and/or removals that are defined on at least one common

parameter, which is the main diff view, (2) additions that are

defined only on added parameters, and (3) removals that are

defined only on removed parameters.

In all our examples from Section III, all exclusions differ-

ences are of the first type, hence only the main view is shown.

Note that an added or removed strongest exclusion may be

defined both on common parameters and on parameters unique

to one model, in which case it will be only presented in the

main view.

B. Computing the Differencing

While computing Diff syn(S
1, S2) is straightforward and

can be achieved by a simple traversal over the parameters,

values, and constraints of the two versions, computing

Diff csem(S1, S2) is much more challenging. Specifically, it

requires computing the set of strongest exclusions SE of a

input : The BDD V alidS1 of all valid tests of S1.

The BDD V alidS2 of all valid tests of S2.

The set of constraints C1 of S1.
The set of constraints C2 of S2.

output: The BDD seAdded of strongest exclusions that are in S1

and not in S2. The BDD seRemoved of strongest exclusions
that are in S2 and not in S1.

1 Init: completed1← FALSE
2 completed2← FALSE
3 SE1 ← newlist
4 SE2 ← newlist
5 level← 1
6 while ¬(completed1 ∧ completed2) do
7 for i ∈ 1, 2 do
8 if ¬completedi then
9 computeSE(V alidSi , level, SEi)

10 if
∨

(SEi) == ¬V alidSi then
11 completedi← TRUE
12 end
13 end
14 end
15 level + +
16 end
17 seAdded← SE1 \ SE2

18 seRemoved← SE2 \ SE1

19 removeDerived(seAdded, C1)

20 removeDerived(seRemoved, C2)

Algorithm 1: Semantic diff of combinatorial models

model version. To achieve efficient computation of SE, we use

a symbolic computation based on Binary Decision Diagrams

(BDDs) [3] as our primary data structure for the set of valid

tests as well as for all other computed artifacts. As explained

in Section II, to handle domains of discrete values rather than

only Boolean ones, we use a BDD that represents the legal

multi-valued to Boolean encoding of the parameter values. For

clarity of presentation, we omit the handling of this standard

encoding from the following pseudo code and accompanying

algorithm description.

In Algorithm 1, we introduce a novel algorithm for com-

puting the semantic differencing of two model versions. The

algorithm is iterative, where in each step it computes the

strongest exclusions up to arity level (line 9), until reaching

the CL. Once reached, it compares the two sets of strongest

exclusions to identify their differences (l. 17), and removes

derived exclusions from these differences (l. 19). BDDs are

used to represent the set of valid tests of each model version

(V alidSi ), to compute and represent the strongest exclu-

sions of each version (SE1 and SE2) and their differences

(seAdded and seRemoved), to check whether the CL has

been reached (l. 10), and to remove the derived exclusions

from the differencing results. The algorithm relies on the

efficiency of negation, conjunction, disjunction, and existential

quantification of BDDs, as explained in Section II.

Algorithm 2 presents the method computeSE, which com-

putes in each iteration the strongest exclusions of arity level
for a given model. For every set of parameters t of size level,
it computes the BDD excludedt of all exclusions on t. This

is achieved by first computing the BDD of valid assignments

to t, which is the projection of the V alid BDD on t, and then

negating the resulting BDD (l. 3). A projection on a set of
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parameters t is computed by existentially quantifying out the

parameters not appearing in t.
Next, to filter out exclusions on t that are not strongest

exclusions, the method conjuncts the BDD excludedt with

the negation of every strongest exclusion BDD from a level

smaller than level whose parameters are contained in t (l. 7).

Thus, all strongest exclusions for each set of parameters t are

symbolically computed at once using BDD operations.

At the end of each call to computeSE, the main algorithm

checks whether the CL has been reached, by checking whether

the strongest exclusions collected so far represent the entire

valid test space. This is achieved by checking whether the

disjunction of the strongest exclusions collected so far is

identical to the BDD of invalid tests (l. 10).

Finally, once the CL of both models is reached (and hence

the CL of the commit), the iteration in Algorithm 1 terminates,

and the set of differences is computed. The derived exclusions

are removed from the result in the removeDerived method.

This is also computed symbolically for every set of parameters

t of size up to CL, by projecting each of the constraints on t,
and removing from the BDD of strongest exclusions for t all

tuples that are not included in one of these projections, using

BDD conjunction and disjunction operations. For additional

details about the computation of derived exclusions see [11].

Note that the removal of the derived exclusions cannot precede

the identification of the exclusion differences, because the

same strongest exclusion can be derived in one version and

not the other. Had the two operations been swapped, such an

exclusion would be falsely identified as a difference between

the two versions.

In practice, for test spaces with a huge number of parameters

and high CLs, computeSE as described so far might require

large memory or long computation time for computing the

projections of the legal space BDD on all parameter tuples

of size level. This step (Line 3 of computeSE) is the main

contributor to the complexity of our algorithm, since for each

model it requires
(
n
k

)
project operations on the BDD of the

valid test space, where n is the number of parameters, and k
is the CL. Thus, we choose to limit the size of the BDDs used

during this computation. If the intermediate BDDs exceeds a

given size threshold, the iteration on the parameter tuples is

interrupted, and the result achieved so far from the previous

level is used instead. In such cases, the user will be notified

that the differencing is incomplete, and that differences are

shown only for strongest exclusions up to the last fully

computed level. In Section V, we will show that most real-

world models we analyzed reach the CL. Of course, a higher

threshold could be used to allow the remaining models reach

their CL.

V. EVALUATION

We present an evaluation of our work in terms of the

results of our differencing technique when applied to real-

world model evolution. We then continue with a user study

evaluating the effectiveness of our differencing technique in

helping CTD practitioners comprehend model changes.

input : The BDD V alidS of all valid tests of S.
The arity level of strongest exclusions to compute.
The list of BDDs SE of strongest exclusions for
levels smaller than level.

output: The list of BDDs SE of strongest exclusions for levels up to and
including level.

1 Init: T ← all parameter tuples of size level
2 for t ∈ T do
3 excludedt ← ¬project(V alidS , t)
4 sizeSE ← size(SE)
5 for i ∈ 0, . . . , sizeSE − 1 do
6 if t ⊇ param(SE(i)) then
7 excludedt ← excludedt ∧ ¬SE(i))
8 end
9 end

10 SE ← {SE, excludedt}
11 end

Algorithm 2: computeSE

A. Real-World Evidence

The research questions guiding our first evaluation are:

RQ1A How do combinatorial models evolve in practice? In

particular, what are the common kinds and sizes of

changes?

RQ1B How does our differencing computation perform on

real model versions in practice?

To answer these questions, we applied our differencing tool

to the evolution of a large corpus of real-world models.

1) Models Used and Setup: We applied our differencing

technique to the evolution of 42 real-world industrial models,

with 107 versions and 65 version commits1. The models were

written by different CTD practitioners over a period of 7 years,

and originate from 12 different domains: firmware, PaaS,

IaaS, file system, operating system, database, storage, analyt-

ics, banking, telecom, networking, and software applications

(email, document management, finance, etc.). The models also

capture different levels of testing, such as function test, system

test, etc. We did not select the models according to any criteria,

and they represent all data available to us. The versions result

from user-defined commits; the time difference between two

consecutive versions ranges between a day and 13 months.

All runs of our differencing computation were performed on a

Linux machine with 16 1.5 GHz cores and 16 GB RAM. Only

one core was used in our experiments. The BDD package used

was JDD [15].

In the following we provide observations on the collected

model data and on our differencing results. Complete per

model data as well as all versions data and differencing results

are available from [2].

2) Results and Observations: Variability in Size and
Complexity. The data shows high variability in size and

complexity of both versions and commits. The size of models

ranges from 4 to 109 parameters with median 11.75 and stan-

dard deviation (SD) of 13.78 (median and SD are computed

on average across commits per model). There were 2 to 500

1Unfortunately, all models are confidential since they were created for IBM
or its clients. We are in the process of checking the option of sharing most
of them after obfuscation.
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values per parameter (median: 4.4, SD: 2.73), and 0 to 381

constraints (median: 13.6, SD: 46.7).

The resulting test space sizes are ranging from 69 to 3∗1042
valid tests (median: 106.05, SD: 107.6), and CLs ranging from

0 to 9 (median: 2.5, SD: 1.55). The size of the changes

resulting from commits ranges from the addition or removal

of a single parameter, constraint and/or value to 56 parameters

added (median: 2, SD: 7.2) and 58 removed (median: 1,

SD: 6.4), 266 constraints added (median: 9, SD: 34.8) and

375 removed (median: 5.15, SD: 29.2), 112 values added

to a common parameter (median: 1.85, SD: 17.9) and 205

removed (median: 1.55, SD: 31.27), and from no changes in

the strongest exclusions to 3096 strongest exclusions added

(median: 19.25, SD: 228.5) and 266 removed (median: 8.75,

SD: 29.05).

While 50% of the models had rather small (2 or less)

parameter additions on average across commits, 25% of the

models had 7.6 or more parameter additions on average, and

while 50% of the models had 1 or less parameter removals

on average, 25% had 4.3 or more such removals on average.

Similarly, while 50% of the models had less than 2 value

additions to common parameters on average, 25% had 9.5 or

more such additions on average, and while 50% of the models

had less than 2 value removals on average, 25% had 10 or

more such removals on average.

Syntactic Diff. Based on the observed data, changes in

constraints (additions in 82% of the commits, removals in

71% of the commits) are more likely to occur than the other

syntactic changes, which are more or less equally common

(parameter/value additions as well as value removals in 65%

of the commits, parameter removals in 55% of the commits).

Additions and Removals. When considering both syntactic

and semantic diff, 89% of the commits included both additions

to the model and removals from it. 8% included only removals,

and 3% only additions. We conclude that a commit tends to

contain complex changes rather than simpler changes of only

additions to the model or only removals from it.

To answer [RQ1A], the results show high variability
in size and complexity of both versions and commits.
Commits tend to contain large and complex changes that
typically involve a combination of additions, removals,
and modifications to the constraints.

The large size and complexity of the models and changes

involved, as evident above, require an efficient and scalable

differencing solution to handle real-world model evolution.

Performance. Figure 3 presents the runtime results of

our semantic differencing computation. Out of a total of 65

commits, computing differencing (in the tool, to display the

differences as shown in the screenshots from our running

example) took less than a second for 45 of the models (70%),

less than 10 seconds for 53 (82%), and only 4 required over

a minute (6% of the commits, from only two models). These

two latter models involved an exceptionally high number of

parameters, large test space BDDs, and a CL greater than 2,

all contributing to the exceptionally long running time.

Fig. 3: Performance of our semantic differencing on real-world

model commits

To answer [RQ1B], the results show that our differenc-
ing computation performs in acceptable times on almost
all real model versions in practice.

B. User Study

The research questions guiding our user study are:

RQ2A Is comprehension of changes in models challenging,

and does our presentation of syntactic and semantic

differencing help practitioners in better understand-

ing the changes done and their consequences?

RQ2B Does the expertise level influence the performance

and confidence of practitioners when attempting to

understand such changes?

RQ2C Is there a difference in difficulty of comprehension

between syntactic and semantic changes?

1) Setup and Participants: Our study included two real-

world models, each with two real-world versions. The first

model, model A, describes a system test space for features

of IBM R© POWER7 R© [36]. Its first version contains 7 pa-

rameters and 33 constraints, and its second version contains

6 parameters and 24 constraints. The second model, model

B, describes an end-to-end test space for a PaaS. Its first

version contains 19 parameters and 2 constraints, and its

second version contains 21 parameters and 4 constraints. The

sizes and changes in the two models are comparable to real-

world model sizes and changes, as reflected by the evidence

shown in Section V-A.

We asked 5 questions about each model, related to the

changes between the two versions. One question about the

syntactic differences between the two versions, and 4 questions

about the semantic differences. The syntactic questions asked

about the number of parameters or values that were added or

removed from the second version.

We presented two types of semantic questions. The first

type referred to the effect of adding values or parameters to

the model, e.g., “By adding the value v to parameter X in
the model, how many new combinations of v and a value u
of parameter Y are added to the space of valid tests?”.

The second type of semantic question referred to specific

value combinations and whether there was a change in their
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validity status, e.g., “The value combination C is excluded
from the valid test space of version 1; is it also excluded from
version 2?”.

Before running the study, we reviewed these questions with

the two CTD practitioners who created the two models we

used in our study, and verified that they reflect real-world

comprehension tasks of model changes.

Each study participant filled an online questionnaire in an

IBM corporate network, containing the questions about the two

models (10 questions in total). For one model only the model

version definitions were provided, and for the other model the

syntactic and semantic diff report was provided as well (as

shown in Section III). The decision on the order of models

in the questionnaire as well as on the identity of the model

that included the differencing report was randomly made per

participant. In addition, after each question the participants

were asked to rate their confidence in the correctness of their

answer from 1 (least) to 5 (most). 16 practitioners participated

in the study, all of whom are CTD practitioners regularly

involved in creating and comprehending combinatorial models

for test designs, as part of their work at IBM. All participants

were previously unfamiliar with the two study models.

2) Results: We separate the question scores and confidence

into two groups: questions answered without using our differ-

encing report (score/confidence without diff), and questions

answered while using our differencing report (score/confidence

with diff). Note that due to the setup explained above, some

participants had the differencing report available for model A,

while others had it for model B. Similarly, some participants

had the differencing report available for the first model they

were asked about (be it A or B) while others had it for the

second one.

Figure 4 summarizes the score results of our study. The

average score without diff was 68.75 (out of 100), and with

diff 76.25. The average confidence without diff was 4.11 (out

of 5) and with diff 4.16. These numbers indicate an overall

improvement of 10% in performance and a slight improvement

in confidence when using the differencing report.

To answer [RQ2A], the results show that comprehension
of changes in models is challenging, and that our
presentation of differencing improves practitioners com-
prehension of the changes done and their consequences.

A deeper analysis is required in order to understand the

impact of the differencing report on different practitioners. To

this end, we explore the differences between the practitioners

based on their level of expertise, as follows. The overall

average score was 72.5. The 16 participants are composed of

two distinct groups. 8 participants are expert CTD practitioners

with a high level of expertise. All these participants scored

between 80 and 100, much above the overall average score.

8 participants are less experienced ones with a relatively low

level of expertise in CTD. These participants scored between

40 and 70, all below the overall average score.

Figure 4 summarizes also the score results of the expert

practitioners and less experienced practitioners, separately. For

the expert practitioners, the average score was 95 without

the diff report and 92.5 with it. Out of 40 questions per

model collectively, the experts answered correctly 37 with

diff and 38. We consider this difference negligible. Thus, the

expert practitioners performed very well regardless of the diff.

Their average confidence was 4.42 without the diff report

and 4.55 with it, indicating only a very slight increase in

confidence. In contrast, for the less experienced practitioners,

the average score was 42.5 without the diff report and 60 with

it, indicating a significant improvement in performance. Their

average confidence was 3.8 without the diff report and 3.78

with it, relatively low in both cases, and rightfully so.

Fig. 4: Average score for the total 16 practitioners, as well as

separately for the 8 experts and 8 less experienced practition-

ers.

To answer [RQ2B], for less experienced practitioners,
the differencing report significantly improves perfor-
mance while not impacting confidence; for expert prac-
titioners, the diff report does not impact performance
and confidence.

All participants answered all the syntactic questions cor-

rectly, regardless of their level of experience and regardless

of whether the diff report was available. For the semantic

questions alone, the average score was 60.94 without the diff

report and 70.31 with it. The average confidence for a syntactic

question was 4.34, above the overall average confidence of

4.14.
To answer [RQ2C], the results show, as one might ex-
pect, that syntactic questions are much easier to answer
than semantic ones, hence our differencing technique is
more useful for understanding semantic differences.

The complete study results are available from [2].

C. Threats to Validity

We discuss threats to the validity of our results, starting

with internal validity. First, our implementation of differencing

computation may not be free of bugs. To mitigate this, we

manually verified the results of the diff computation on small

synthetic models and on many of the real-world models.

Second, there could have been a bias in the results of our user

study due to the order of models as well as the order between

questions for which the diff report was provided and those

for which it was not provided. To mitigate this, as explained

above, we randomized the order of models in the user study, as
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well as the decision whether the first or second model would

be accompanied with the diff report.

There are also threats to external validity. First, the models

and versions used in the user study and in the analysis

might not be representative of real-world model evolution. To

eliminate this threat, we chose real-world models and versions,

all that were available to us. Second, our study participants

might not be representative of real-world practitioners. To

mitigate this, we chose 16 real-world CTD practitioners who

are regularly involved in creating and comprehending combi-

natorial models for test designs. However, a larger group of

practitioners and more models and questions could strengthen

the generalizability of our results.

VI. RELATED WORK

Much work has been published on syntactic and semantic

differencing of programs and models within the more general

field of Software Evolution (see, e.g. [12], [28], [37]).

Most relevant to our present work is the work of Maoz et

al. on semantic model differencing for Class Diagrams [24]

(using SAT) and Activity Diagrams [23] (using BDD-based

symbolic algorithm). Other recent work considered semantic

differencing for Feature Models [1], [32], in the context of

software product lines. These works address similar challenges

to the ones we deal with, including the efficient computation

of the semantic differences and their effective presentation to

the engineer. A framework for relating syntactic and semantic

model differences has been presented in [22]. To the best

of our knowledge, our work is the first to consider syntactic

and semantic differencing for combinatorial models. In addi-

tion, the existing model differencing work provided prototype

implementations and evaluated performance, but none has

evaluated the usefulness of diff representations to real-world

practitioners.

While there is a large body of work on various aspects

of combinatorial testing, to the best of our knowledge, none

of it addresses the problem of differencing of combinatorial

models in the context of their evolution. The survey by Nie et

al. [26] considers 93 academic papers on combinatorial testing

but does not mention model evolution. Many CTD tools [6],

[9], [16], [19], [27] exist, but to the best of our knowledge,

they provide no support for model differencing. Our practical

experience, in contrast, shows that managing and comprehend-

ing changes in models is a challenge encountered frequently

by practitioners. One notable exception is the work of Qu

et al. [29], which examines the effectiveness of combinatorial

testing prioritization and re-generation strategies on regression

testing in evolving programs with multiple versions. However,

the work does not address evolution at the model level.

Derived exclusions in combinatorial models, a.k.a. implicit
constraints, have been discussed in previous works and were

shown to complicate the solving of the CTD problem [20]

and the modeling process [7]. [11] uses derived exclusions

to review and debug the model constraints. While it suggests

to present only minimal derived exclusions, the concept of

strongest exclusions is not discussed independently. Moreover,

the work does not suggest the use of strongest exclusions for

a canonical representation of a model. Finally, all these works

do not consider derived exclusions in the context of evolution.

In a recent work, we presented a lattice-based semantics

for interpreting the evolution of combinatorial models [33].

The new semantics replaces the inadequate Boolean semantics

which is currently in use by CTD tools for interpreting

model changes. It provides a theoretical base for a consistent

interpretation of atomic changes to the model, and exposes

which additional parts of the model must change following an

atomic change, in order to restore validity. The differencing

approach we present and evaluate in this paper fits well with

this new semantics, since strongest exclusions can be precisely

defined using our lattice-based semantics.

Finally, in a research roadmap presented in a recent re-

view on combinatorial testing [38], Yilmaz et al. suggest the

challenge “to handle evolving [combinatorial] models as they

change over time”. Our work starts going in this direction.

VII. CONCLUSION AND FUTURE WORK

In this work we propose a first syntactic and semantic

differencing technique for combinatorial models of test de-

signs, and present an efficient algorithm for computing it.

To enable semantic differencing, we suggest a concise and

canonical representation of a model that is used as the basis for

differencing. We implemented our technique in our CTD tool

IBM FOCUS, and evaluated it on 42 real-world models with

107 versions, demonstrating its acceptable performance times.

Our analysis reveals that real-world commits of combinatorial

models tend to be large and complex in practice.

We further conducted a user study with CTD practition-

ers on real-world combinatorial model versions. The study

showed a significant improvement of over 40 percent in the

performance of less experienced practitioners when using our

differencing techniques, and an improvement in confidence of

expert practitioners in their comprehension of model changes.

The present paper is part of our larger research project,

on comprehension and evolution of combinatorial models

for test designs. In a recent paper we presented the use of

visualization for comprehension of combinatorial models and

test plans [34]. As part of this project, we plan to further

analyze model differences and identify change patterns that

commonly occur in real-world combinatorial model evolution,

such as abstraction, refinement, and refactoring. Finally, we

plan to investigate co-evolution of models and the test plans

derived from them, and find practical and efficient ways to

update a test plan following changes to the model from which

it was derived.
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